Generell informasjon

Denne utslippsrapporten omfatter utslipp til luft og sjø fra Ulafeltet, inklusive Tambar, for 2017. Rapporten er utarbeidet av Aker BP ASA. Kontaktperson i er miljørådgiver Kristin Ravnås (tlf 93482486, kristin.ravnas@akerbp.com).

Ula er et olje- og gassproduserende felt lokaliserert i den sørlige delen av Nordsjøen, på grenselinjen mellom norsk og britisk kontinentalsokkel. Ulafeltet ligger i blokk 7/12 (PL019A) og har vært i produksjon siden 1986. Ulafeltet produserer fra blokkene Ula (7/12, 7/12B), Tambar (1/3), Blane (2/1 og 1/2) og Oselvar (1/3 og 1/2). Feltcenteret består av 3 platformer forbundet med gangbroer; en produksjons-, en bore-, og en boligplattform. Oljen eksporteres i rørledning til Teeside via Ekofisk. Gassen som produseres reinjiseres for økt oljeutvinning.

Innholdsfortegnelse

1 Feltets status ... 4
 1.1 Generelt ... 4
 1.2 Kort oppsummering av utslippsstatus .. 8
 1.3 Gjeldende utslippsillateler .. 9
 1.4 Kjemikalier som er prioritert for substitusjon ... 10
 1.5 Status for nullutsippsarbeidet ... 12
 1.6 Miljøprosjerker / forskning og utvikling .. 12
 1.6.1 Beste praksis for drift og vedlikehold: ... 13
 1.7 Aktive brønner .. 14

2 Utslipp fra boring .. 15

3 Utslipp til vann ... 17
 3.1 Olje-/vannstrømmer og renseanlegg ... 17
 3.1.1 Utslippstrømmer og vannbehandling ... 17
 3.1.2 Analyse og prøvetaking av produsertvann og drenasjevann 17
 3.1.3 Omregningsfaktorer .. 17
 3.1.4 Usikkerhet i vanndata .. 18
 3.2 Utslipp av olje .. 20
 3.3 Utslipp av forbindelser i produsertvann ... 22
 3.3.1 Beskrivelse av metodikk for måling av tungmetallinnhold 22
 3.3.2 Beskrivelse av metodikk for måling av løse organiske komponenter 22
 3.3.3 Mengde løste komponenter i produsertvann ... 22

4 Bruk og utslipp av kjemikalier ... 26
 4.1 Samlet forbruksog utslipp ... 26
 4.2 Bore- og brønkkjemikalier (Bruksområde A) ... 28
 4.3 Produktionskjemikalier (Bruksområde B) .. 29
 4.4 Injeksjonkjemikalier (Bruksområde C) ... 30
 4.5 Rørledningkjemikalier (Bruksområde D) .. 30
 4.6 Gassbehandlingskjemikalier (Bruksområde E) .. 31
 4.7 Hjelpkjemikalier (Bruksområde F) ... 31
 4.8 Kjemikalier som tilsatt eksportrømmen (Bruksområde G) 32
 4.9 Kjemikalier fra andre produksjonsteder (Bruksområde H) 33
 4.10 Sporstoffe (Bruksområde K) ... 33

5 Miljøvurdering av kjemikalier .. 34
 5.1 Oppsummering av kjemikalier .. 34

6 Bruk og utslipp av miljøfarlige forbindelser ... 37
 6.1 Kjemikalier som inneholder miljøfarlige forbindelser 37
 6.2 Miljøfarlige forbindelser som tilsetninger i produkter 37
 6.3 Miljøfarlige forbindelser som forurensning i produkter 37

7 Utslipp til luft .. 39
 7.1 Forbrenningsprosesser ... 39
 7.2 Utslipp ved lagring og lasting av olje .. 41
 7.3 Diffuse utslipp og koldventilering ... 41
 7.4 Bruk og utslipp av gassporstoffer .. 41

8 Utsiktete utslipp ... 42
 8.1 Utsiktete oljeutslipp ... 42
 8.2 Utsiktet utslipp av kjemikalier .. 42
 8.3 Akutte utslipp til luft .. 45

9 Avfall ... 47
 9.1 Farlig avfall ... 47
 9.2 Kildesortert vanlig avfall .. 49

10 Vedlegg ... 51
 10.1 EEH tabeller Ula ... 51
 10.2 EEH tabeller Tambar ... 62

11 Tabeller .. 65

12 Figurer ... 66
1 Feltets status

1.1 Generelt
Ula feltet har vært i produksjon siden 1986. Ula forventes å produsere fram til 2028 og fungerer også som et områdesenter for nærliggende felt.

Det er gjennomført beredskapsøvelser på Ula i 2017.

Tabell 1 viser eierandeler for Ula og Tambar.

Oversikt over gjenværende ressurser er gitt i Tabell 2.

Figur 1 og Figur 2 viser prognoser for produksjon av henholdsvis olje og gass.

Tabell 1 - Eierandeler på Ulafeltet og Tambar

<table>
<thead>
<tr>
<th>Operatør/partner Ula</th>
<th>Eierandel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aker BP ASA</td>
<td>80,0 %</td>
</tr>
<tr>
<td>Faroe Petroleum Norge AS</td>
<td>20,0 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operatør/partner Tambar</th>
<th>Eierandel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aker BP ASA</td>
<td>55,0 %</td>
</tr>
<tr>
<td>Faroe Petroleum Norge AS</td>
<td>45,0 %</td>
</tr>
</tbody>
</table>

Tabell 2 - Oversikt over utvinnbare og gjenværende reserver (kilde: www.npd.no)

<table>
<thead>
<tr>
<th>Utvinnbare reserver Ula</th>
<th>Gjenværende reserver Ula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olje [mill Sm³]</td>
<td>Gass [mrd Sm³]</td>
</tr>
<tr>
<td>83,4</td>
<td>3,90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utvinnbare reserver Tambar</th>
<th>Gjenværende reserver Tambar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olje [mill Sm³]</td>
<td>Gass [mrd Sm³]</td>
</tr>
<tr>
<td>13,6</td>
<td>3,0</td>
</tr>
</tbody>
</table>
Figur 1 – Oljeproduksjon på Ula og Tambar (Prognose fra RNB2018)

Figur 2 - Gassproduksjon på Tambar (Prognose fra RNB 2018)
Tabell 3 – EEH-tabell 1.2 Status forbruk

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>18 928 320</td>
<td>114 560</td>
<td>492 816</td>
<td>4 762 668</td>
<td>218 880</td>
</tr>
<tr>
<td>Februar</td>
<td>32 679 631</td>
<td>194 524</td>
<td>357 259</td>
<td>4 648 465</td>
<td>230 000</td>
</tr>
<tr>
<td>Mars</td>
<td>61 169 523</td>
<td>215 619</td>
<td>360 817</td>
<td>6 260 595</td>
<td>0</td>
</tr>
<tr>
<td>April</td>
<td>53 259 680</td>
<td>208 023</td>
<td>335 057</td>
<td>5 754 214</td>
<td>-28 578</td>
</tr>
<tr>
<td>Mai</td>
<td>38 585 677</td>
<td>261 084</td>
<td>494 067</td>
<td>5 106 319</td>
<td>163 827</td>
</tr>
<tr>
<td>Juni</td>
<td>47 251 406</td>
<td>282 609</td>
<td>594 109</td>
<td>5 684 587</td>
<td>-3 400</td>
</tr>
<tr>
<td>Juli</td>
<td>41 755 150</td>
<td>0</td>
<td>410 735</td>
<td>4 638 105</td>
<td>10 011</td>
</tr>
<tr>
<td>August</td>
<td>45 401 890</td>
<td>110 907</td>
<td>412 533</td>
<td>5 157 828</td>
<td>12 080</td>
</tr>
<tr>
<td>September</td>
<td>47 158 845</td>
<td>280 224</td>
<td>428 468</td>
<td>6 011 357</td>
<td>40 445</td>
</tr>
<tr>
<td>Oktober</td>
<td>37 424 982</td>
<td>208 075</td>
<td>745 214</td>
<td>4 690 512</td>
<td>200 535</td>
</tr>
<tr>
<td>November</td>
<td>31 879 719</td>
<td>139 260</td>
<td>613 087</td>
<td>4 904 253</td>
<td>41 823</td>
</tr>
<tr>
<td>Desember</td>
<td>17 623 161</td>
<td>300 857</td>
<td>656 510</td>
<td>5 005 614</td>
<td>136 171</td>
</tr>
<tr>
<td>Sum</td>
<td>473 117 984</td>
<td>2 315 742</td>
<td>5 900 672</td>
<td>62 624 517</td>
<td>1 021 794</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28 519</td>
</tr>
<tr>
<td>Februar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25 380</td>
</tr>
<tr>
<td>Mars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2 255</td>
</tr>
<tr>
<td>Mai</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13 036</td>
</tr>
<tr>
<td>Juni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-371</td>
</tr>
<tr>
<td>Juli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 489</td>
</tr>
<tr>
<td>August</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 120</td>
</tr>
<tr>
<td>September</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 555</td>
</tr>
<tr>
<td>Oktober</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310 245</td>
</tr>
<tr>
<td>November</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>797 455</td>
</tr>
<tr>
<td>Desember</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>610 829</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 790 002</td>
</tr>
</tbody>
</table>
Tabell 4 – EEH-tabell 1.3 Status produksjon

Ula

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>57 339</td>
<td>33 305</td>
<td>20 495 751</td>
<td>237 355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Februar</td>
<td>50 032</td>
<td>29 939</td>
<td>34 867 358</td>
<td>196 979</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>71 568</td>
<td>42 899</td>
<td>65 101 730</td>
<td>231 731</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>68 933</td>
<td>44 266</td>
<td>55 497 110</td>
<td>249 842</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mai</td>
<td>60 620</td>
<td>38 856</td>
<td>41 444 478</td>
<td>269 735</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juni</td>
<td>57 028</td>
<td>45 007</td>
<td>49 100 848</td>
<td>293 917</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juli</td>
<td>48 181</td>
<td>38 275</td>
<td>43 805 809</td>
<td>182 556</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>47 234</td>
<td>37 637</td>
<td>47 993 955</td>
<td>182 366</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>50 742</td>
<td>39 678</td>
<td>50 578 734</td>
<td>227 344</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktober</td>
<td>58 695</td>
<td>36 551</td>
<td>42 585 769</td>
<td>203 767</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>61 154</td>
<td>38 341</td>
<td>35 218 212</td>
<td>180 840</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desember</td>
<td>53 031</td>
<td>31 321</td>
<td>21 387 889</td>
<td>187 217</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>684 557</td>
<td>456 075</td>
<td>508 077 643</td>
<td>2 643 649</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tambar

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>22 796</td>
<td>20 664</td>
<td>3 688 053</td>
<td>1 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Februar</td>
<td>15 926</td>
<td>14 383</td>
<td>2 817 998</td>
<td>1 393</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>17 762</td>
<td>15 973</td>
<td>2 689 207</td>
<td>3 797</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>23 616</td>
<td>21 334</td>
<td>3 851 842</td>
<td>14 395</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mai</td>
<td>17 815</td>
<td>16 208</td>
<td>2 741 585</td>
<td>7 020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juni</td>
<td>27 108</td>
<td>24 570</td>
<td>4 429 255</td>
<td>5 460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juli</td>
<td>19 095</td>
<td>17 210</td>
<td>2 998 181</td>
<td>3 348</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>18 584</td>
<td>16 816</td>
<td>2 978 294</td>
<td>1 776</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>20 791</td>
<td>18 845</td>
<td>3 019 936</td>
<td>6 233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oktober</td>
<td>1 464</td>
<td>1 328</td>
<td>274 939</td>
<td>757</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>13 897</td>
<td>12 675</td>
<td>2 178 847</td>
<td>1 867</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desember</td>
<td>11 178</td>
<td>10 042</td>
<td>1 897 396</td>
<td>2 402</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>210 032</td>
<td>190 048</td>
<td>33 565 533</td>
<td>49 568</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Merk at dataene i Tabell 3 og Tabell 4 er gitt i EEH av OD. I resten av rapporten er egne tall benyttet.
1.2 Kort oppsummering av utslippsstatus

Figur 3 og Figur 4 viser historiske utslipp og prognoser for utslipp til henholdsvis luft og sjø. Prognoser er hentet fra RNB2018 (revidert nasjonalbudsjett).

Prognoser for utslipp av produsert vann inkluderer vann fra andre felt som produserer til Ula og er vist i Figur 4. Det har nesten ikke vært reinjeksjon av produsert vann i 2017.

Figur 3 - Historiske utslipp samt prognoser for CO₂ og NOX (data fra RNB2018)

Figur 4 - Historiske data for utslipp og reinjeksjon av produsert vann, samt prognoser for utslipp (data fra RNB2018)
1.3 Gjeldende utslippstillatelser

Tabell 5 viser gjeldende utslippstillatelser på Ula:

Tabell 5 – Utslippstillatelser gjeldende på Ula og Tambar

<table>
<thead>
<tr>
<th>Utslippstillatelse</th>
<th>Dato</th>
<th>Referanse</th>
</tr>
</thead>
</table>

Rensing av produsert vann har fungert tilfredsstillende i 2017 og vi har ikke hatt noen måneder med vektet gjennomsnitt over 30 mg/ltr oljeinnhold. Vektet årlig gjennomsnitt for oljeinnhold i produsert vann i 2017 var 17,8 mg/ltr.

Vektet årlig gjennomsnitt for oljeinnhold i drenasjevann fra seasump viste 9,4 mg/ltr for 2017.

Forbruk av røde kjemikalier er innenfor tillatelsen ramme. Utslipp av gule produksjonskjemikalier ligger også innenfor det som er anslått mengde i tillatelsen. Endringer i forhold til fjoråret er kommentert under hvert bruksområde.

Utilsiktede utslipp til sjø og luft er beskrevet i kapittel 8.
1.4 Kjemikalier som er prioritert for substitusjon

Nedenfor gis det en status på substitusjon av kjemikalier som er brukt i 2017, samt en oversikt på hvilke kjemikalier som er faset ut i løpet av året. Tillatelsen inneholder flere produkt som kan komme til anvendelse, og disse vil da inngå i substitusjonsoversikten.

Tabell 6: Kjemikalier som er prioritert for substitution

<table>
<thead>
<tr>
<th>Kjemikalier for substitusjon</th>
<th>Miljødir. Fargeklasse</th>
<th>Kommentarer</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versamod</td>
<td>Rød</td>
<td>Viskositetbygger – produktet inngår i oljebasert borelamsystem der viskositeten kan endres i forhold til krav til bæreevne for vektmateriale og krav om å kontrollere bunnhullstrykket under forskjellige brønnoperasjoner. Samlike slike børeslamsystemer benytter kjemikalier som er klassifisert som røde.</td>
<td>Ikke prioritert for substitusjon – går ikke til utslipp</td>
</tr>
<tr>
<td>Ultralube II(e)</td>
<td>Rød</td>
<td>Friksjonsreduserende middel – produktet inngår i oljebasert borelamsystem der viskositeten kan endres i forhold til krav til bæreevne for vektmateriale og krav om å kontrollere bunnhullstrykket under forskjellige brønnoperasjoner. Samlike slike børeslamsystemer benytter kjemikalier som er klassifisert som røde.</td>
<td>Ikke prioritert for substitusjon – går ikke til utslipp</td>
</tr>
<tr>
<td>VG Supreme</td>
<td>Rød</td>
<td>Viskositetbygger – produktet inngår i oljebasert borelamsystem der viskositeten kan endres i forhold til krav til bæreevne for vektmateriale og krav om å kontrollere bunnhullstrykket under forskjellige brønnoperasjoner. Samlike slike børeslamsystemer benytter kjemikalier som er klassifisert som røde.</td>
<td>Ikke prioritert for substitusjon – går ikke til utslipp</td>
</tr>
<tr>
<td>Rhefleet plus NS</td>
<td>Rød</td>
<td>Viskositetbygger – produktet inngår i oljebasert borelamsystem der viskositeten kan endres i forhold til krav til bæreevne for vektmateriale og krav om å kontrollere bunnhullstrykket under forskjellige brønnoperasjoner. Samlike slike børeslamsystemer benytter kjemikalier som er klassifisert som røde.</td>
<td>Ikke prioritert for substitusjon – går ikke til utslipp</td>
</tr>
<tr>
<td>Versatrol M</td>
<td>Rød</td>
<td>Filteringsstoff – produktet inngår i oljebasert borelamsystem der viskositeten kan endres i forhold til krav til bæreevne for vektmateriale og krav om å kontrollere bunnhullstrykket under forskjellige brønnoperasjoner. Samlike slike børeslamsystemer benytter kjemikalier som er klassifisert som røde.</td>
<td>Ikke prioritert for substitusjon – går ikke til utslipp</td>
</tr>
<tr>
<td>Ecotrol RD</td>
<td>Rød</td>
<td>Filteringsstoff – produktet inngår i oljebasert borelamsystem der viskositeten kan endres i forhold til krav til bæreevne for vektmateriale og krav om å kontrollere bunnhullstrykket under forskjellige brønnoperasjoner. Samlike slike børeslamsystemer benytter kjemikalier som er klassifisert som røde.</td>
<td>Ikke prioritert for substitusjon – går ikke til utslipp</td>
</tr>
<tr>
<td>IFE-WT-17</td>
<td>Rød</td>
<td>Det ble søkt og om gitt tillatelse til bruk av sportstoff i vann med rød miljøklassifisering i 2016. Ved bruk av sportstoff må det benyttes et stoff som er hensiktsmessig for sporring og er tilstrekkelig tilpasset temperatur og trykk.</td>
<td>Ikke prioritert for substitusjon.</td>
</tr>
<tr>
<td>LP-100 Flow Improver</td>
<td>Rød</td>
<td>Er substituert med et gult Y1 produkt , LP 200 W</td>
<td>Substituert.</td>
</tr>
<tr>
<td>Hyspin Spindle oil 10</td>
<td>Sort</td>
<td>Produktet ble søkt inn i rammetillatelsen i 2015, fremskaffet HOCNF. Mulige substitusjonskandidater er ikke identifisert</td>
<td>Frist for substitusjon ikke fastsatt.</td>
</tr>
</tbody>
</table>
"AFFF"
Arctic Foam 201 1% og
Arctic Foam 201 3% | Svart | Brannskummet AFFF er et beredskapskjemikalie med svart
miljøklassifisering. Det er identifisert ett gult Y1 produkt- Re-
healing RF-1 AG, og skal fases inn ila 2018.. | Frist for substitusjon 2018.

EC6157A	Gul Y2	Avleirgshemmere- substitusjonskandidater ikke identifisert	Frist for substitusjon ikke fastsatt
EC6359A			
EC6348A			
EC6771A			
Scaletrat 8102			
Scaletrat 8125			

| EC1545A | Gul Y2 | Korrosjonsinhibitor- substitusjonskandidat ikke identifisert | Frist for substitusjon ikke fastsatt |
| Emulsotron X-8036 | Gul Y2 | Emulsjonsbryter – substitusjonskandidat ikke identifisert | Frist for substitusjon ikke fastsatt |
| ECF-2083 | Gul Y2 | Kompletteringkjemikalie – substitusjonskandidat ikke
identifisert | Frist for substitusjon ikke fastsatt |
| D-193 | Gul Y2 | Sementeringkjemikalie – substitusjonskandidat ikke
identifisert | Frist for substitusjon ikke fastsatt |
| ECF-1866 | Gul Y2 | Friksjonsreduserende middel – substitusjonskandidat ikke
identifisert | Frist for substitusjon ikke fastsatt |
| Flexoil WM 2200 | Gul Y2 | Voksinhibitor – substitusjonskandidat ikke identifisert | Frist for substitusjon ikke fastsatt |
| Brayco Micronic SV/3 | Gul Y2 | Hydraulikk værskie – substitusjonskandidat ikke identifisert | Frist for substitusjon ikke fastsatt |
1.5 Status for nullutslippsarbeidet

Tabell 7 – Status for nullutslippsarbeidet

<table>
<thead>
<tr>
<th>Tiltaksbeskrivelse</th>
<th>Status</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miljø- og energistyring</td>
<td>Gul</td>
<td>Implemenerer nytt styringssystem for Aker BP og vil gjennomføre ny energikartlegging med forokus på tiltak i 2018.</td>
</tr>
<tr>
<td>Oppsamling og re-injeksjon av produsert oljeholdig sand eller kalk fra reservoaret</td>
<td>Grønn</td>
<td>Evt. produksjon av sand fra Tambar, vil kunne bli felt ut i separatorene på Ula. Dersom dette skulle skje vil det bli fraktet til land for behandling.</td>
</tr>
<tr>
<td>Oppsamling og re-injeksjon av sementkjemikalier & overskuddsøxsement</td>
<td>Grønn</td>
<td>Avfall blir fraktet til land for behandling.</td>
</tr>
<tr>
<td>Gjenbruk og gjenvinning av borevæsker</td>
<td>Grønn</td>
<td>Borevæsker blir gjenbrukt/gjenvunnet der det er mulig.</td>
</tr>
<tr>
<td>Redusere utslipp fra legging og drift av rørlønner. Begrense utslipp gjennom materialvalg og kjemikalesubstitusjon.</td>
<td>Grønn</td>
<td>Medio 2007 ble ny rørlønning satt i drift mellom Ula-Tambar (13%Cr) som erstatning for UGIP rørlønning. Forbruket av korrosjonshemmer falt da bort.</td>
</tr>
<tr>
<td>Re-injeksjon av produsert vann til reservoaret for trykkstøtte</td>
<td>Gul</td>
<td>Gjennomført siden 1995. PWRI er primærtiltak for null utslipp på Ula. Det har i flere år vært lavere andel reinjeksjon av produsertvann enn ønsket på grunn av problemer med injeksjonspumpene. En egen redegjørelse om BAT for rensing og reinjeksjon av Ula produsertvann ble sent til Miljødirektoratet i mars 2016. I 2015 var det ingen reinjeksjon, i 2016 var det 11,7% reinjeksjon av produsert vann på Ula og i 2017 var det bortimot ingen reinjeksjon av produsert vann.</td>
</tr>
<tr>
<td>Utfasing av potensielt miljøskadelige kjemikalier</td>
<td>Grønn</td>
<td>Utfasingsarbeidet er oppsummert ovenfor i Tabell 6.</td>
</tr>
</tbody>
</table>

Ula feltet har tidsintegrert EIF S2 med bruk av nye OSPAR PNEC-verdier for naturlig forekommende stoffer, uten vekting. Tilsatt kjemikalie som korrosjonshemmer bidrar alene til 44 % av EIF bidraget men oljeinholdet bidrog også i stor grad.

1.6 Miljøprosjekter / forskning og utvikling

Aker BP have ongoing research and development (R&D) activities within topics related to geology and geophysics, drilling and well, operation and production as well as HSE. The main driving forces for R&D projects has been to secure a license to operate in new areas and to carry out operations efficiently at a high HSE standard and with state-of-the-art technology. The following text give a short summary of a selection of ongoing R&D projects relevant for the south fields.

DREAM-MER
The Environmental Impact Factor (EIF), an assessment tool for produced water introduced more than a decade ago, has been a useful tool for addressing the “zero-harmful discharge” management approach on the Norwegian Continental Shelf. Initiated by the oil and gas operators in the Norwegian sector as a part of the DREAM model, the EIF was designed as a risk management tool, and lacks the capability to assess actual impacts on the exposed ecosystem. As the oil and gas industry moves into new and more environmentally and politically sensitive areas of operation, the need for a more realistic approach to risk assessment becomes evident. Through the DREAM-MER project, science-based model tools will be developed to more efficiently manage environmental impacts and risks of produced water discharges.

HighEFF: Energy Efficient and Competitive Industry for the Future
This center is one of Norway’s centers for environment-friendly energy research co-funded by the Research Council of Norway and Industry. It aims to increase energy efficiency in processes through work related to methodologies, technical components and energy cycles thus reducing greenhouse gas emissions. Different applications are considered and case studies are carried out for various industries important in Norway.

LoVe (Lofoten Vesterålen) Cabled Observatory
The Norwegian Sea surrounding the Lofoten and Vesterålen islands is an important area for the fishing industry and for tourism. It is characterized as particularly vulnerable in the Integrated Management Plan for Lofoten and the Barents Sea. The vulnerability is linked to the fact that this is an important habitat for many species, it is spawning area for cod and other fish and there are corals present. In order to improve the knowledge about these northern marine ecosystems through collection of real-time data (baseline) the LoVe Cabled Observatory has been developed. Being located 12 km off the coast of Vesterålen at Bø and at 250 m water depth, it has been operational for over 3 years. Aker BP has now joined Statoil and IMR in this collaboration and will contribute towards establishing new knowledge as well as developing new sensor-based environmental monitoring. [http://love.statoil.com]
OilDisp: Oil Spill Dispersant Strategies and Biodegradation Efficiency

The use of chemical dispersants as part of oil spill contingency planning has been implemented for several oil fields on the Norwegian Continental Shelf (NCS). Depending on the size of the oil spill dispersants may be an alternative or supplement to mechanical treatment. Chemical dispersants have been used as part of the response strategies for both surface and subsurface oil spills. One of the main advantages of using dispersants is to promote natural oil biodegradation. The OSCAR model is currently used as the industrial standard by Norwegian oil companies to predict the fate of oil spills, and the efficiency of operational tools. There is a need for improved basic understanding of the effect of dispersants on oil compound biodegradation and to incorporate this understanding into the OSCAR model for improved predictions of oil fate. This project aims at providing increased knowledge to cover these needs by producing improved experimental data describing oil biodegradation with and without the use of dispersants under different conditions and using these data as input to improve the OSCAR model.

Rigspray
Experience from activities in cold weather oceanic regions indicates that ice accretion on vessels and offshore structures must be taken into account in addition to loads from wind, waves, sea ice etc. to ensure safe and efficient operations. Icing both originates from freezing of water from the atmosphere (fog, rain, snow) and freezing of sea water. Sea spray icing is considered to be the most serious form of icing due to the potentially rapid build up, and constitutes the majority (80-90 %) of registered icing events (Brown and Mitten,1988). Sea spray icing may occur when sea spray is deposited on a structure and the air temperature is below freezing. Icing may have significant effect on the structural and operational integrity and may challenge the stability of floating structures.

The primary objective of RigSpray is the development of knowledge, models and a tool to estimate marine icing loads required for design. Design requirements are given by the regulatory bodies, such as the Petroleum Safety Authority (PSA), and specified in for example NORSOK N-003, ISO 19906.

Seatrack: Seabird Tracking
Until recently, it has been difficult to follow the movements of seabirds. As a result, we know little about which ocean regions the different species prefer outside the breeding season. New technology, however, now enables us to study this is much greater detail. Over the last few years, small and light instruments, so-called light-loggers that can be attached to the bird’s ring, have been developed. These loggers record data on light intensity and time of day that can be used to calculate the bird’s daily positions after the bird has been recaptured and the data downloaded. Because most seabirds return to the same breeding site year after year, this technology is ideal to study the movements of populations outside the breeding season. This project generates documentation of area use, including moulting areas, migration routes and wintering areas for different seabird populations over a three-year period. This will yield knowledge concerning which environmental factors affect the populations and the vulnerability of the populations to any acute incident such as an oil spill, mass starvation or drowning in fishing gear. The data are also incorporated into the common models used to calculate environmental risk.

1.6.1 Beste praksis for drift og vedlikehold:

Systembeskrivelsen beskriver i detalj anleggets virkemåte, mens driftsprosedyren inneholder prosedyre for oppstart, feilsøking, sjekklister, alarm og tripp grenser samt prosedyrer for innestenging for vedlikehold.

Anleggets vedlikehold blir fulgt opp gjennom bedriftens vedlikeholdssystem, som består av flere rutiner med ulike aktiviteter og tidsintervaller.
Aktive brønner

Tabell 8 – Brønnstatus 2017

<table>
<thead>
<tr>
<th>Innretning</th>
<th>Produsent</th>
<th>Vanninjektor</th>
<th>WAG¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ula</td>
<td>7</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Tambar</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Water Alternating Gas
2 Utslippsrapport Ula og Tambar 2017

Tabell 9 - EEH tabell 2.1 Bruk og utslipp av vannbasert borevæske
Ula
NA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3-K-2</td>
<td>1 388,10</td>
<td>0,00</td>
<td>32,55</td>
<td>0,00</td>
<td>1 420,65</td>
</tr>
<tr>
<td>1/3-K-4</td>
<td>1 085,44</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>1 085,44</td>
</tr>
<tr>
<td>SUM</td>
<td>2 473,54</td>
<td>0,00</td>
<td>32,55</td>
<td>0,00</td>
<td>2 506,09</td>
</tr>
</tbody>
</table>

Tabell 10 - EEH tabell 2.2 Disponering av kaks ved boring med vannbasert borevæske
Ula
NA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3-K-2</td>
<td>484</td>
<td>165,79</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>1/3-K-4</td>
<td>485</td>
<td>166,13</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>SUM</td>
<td>969</td>
<td>331,92</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Tabell 11 - EEH tabell 2.3 Boring med oljebasert
Ula
NA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3-K-2</td>
<td>0,00</td>
<td>0,00</td>
<td>68,70</td>
<td>80,10</td>
<td>148,80</td>
</tr>
<tr>
<td>1/3-K-4</td>
<td>0,00</td>
<td>0,00</td>
<td>1 060,26</td>
<td>495,74</td>
<td>1 556,00</td>
</tr>
<tr>
<td>SUM</td>
<td>0,00</td>
<td>0,00</td>
<td>1 128,96</td>
<td>575,84</td>
<td>1 704,80</td>
</tr>
</tbody>
</table>
Tabell 12 - EEH tabell 2.4 Disponering av kaks ved boring med oljebasert borevæske

Ula

NA

Tambar

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3-K-2</td>
<td>280</td>
<td>36,37</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>1/3-K-4</td>
<td>6 012</td>
<td>530,60</td>
<td>0,03</td>
<td>0,00</td>
<td>0,00</td>
<td>0,03</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>SUM</td>
<td>6 292</td>
<td>566,97</td>
<td>0,03</td>
<td>0,00</td>
<td>0,00</td>
<td>0,03</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>
3 Utslipp til vann

3.1 Olje-/vannstrømmer og renseanlegg

3.1.1 Utslippstrømmer og vannbehandling

Oljeholdig vann fra Ula kommer fra følgende kilder:

- Produsertvann
- Drenasjessystem for åpent avløpsvann

Produsertvann fra samtlige separatorer på Ula renses ved hjelp av hydrosykloner og avgasses. Intensjonen er å reinjiser produsert vannet til reservoaret for trykkstøtte og fortrengning av olje. I 2017 var det nesten ingen reinjeksjon av produsert vann på Ula.

På Tambar har det vært boring f.o.m. oktober t.o.m. desember og vi har benyttet boreriggen Mærsk Interceptor. Utslipp av drenasjevann fra Mærsk Interceptor skjer etter rensing i Soiltech renseanlegg, som fjerner evt olje og faststoff. Renset vann lagres på en 4 m³ tank før utslipp til sjø.

![Image](image.png)

En oversikt over utslipp er gitt i Tabell 14 – EEH-tabell 3.1 Utslipp av oljeholdig vann og Figur 5 – Utslipp av olje og oljeholdig vann viser historisk utvikling.

Akutt utslipp er rapportert i kapittel 8 og er ikke inkludert i dette kapittelet.

3.1.2 Analyse og prøvetaking av produsertvann og drenasjevann

Prøvetakingspunkt for produsertvann er lokaliseret nedstrøms produsertvannskjølene. Dersom produsertvannet går til reinjeksjon tas det en daglig spotsjekk av vannet for analyse. Resultatet rapporteres i den daglige lab-rapporten. Dersom vannet slippes til sjø tas det en daglig komposittprøve basert på fem prøvetakninger i døgnet.

For utslipp av drenasjenvann via Mærsk Interceptor blir olje i vann innholdet målt før vannet blir sluppet til sjø. Dette gjøres med et håndholdt Turner TD500 apparat (fluoriserende teknologi).

3.1.3 Omrengningsfaktorer

I 2013 innførte Aker BP bruk av 3-månedlig korrelassjonsfaktor for olje i vann. Korrelasjonsfaktor beregnes av Intertek West Lab og er basert på de 12 siste målingene av olje i vann ved GC og Arjay. Resultat funnet ved måling av olje i vann ved Arjay divideres med oppgitt faktor før rapportering.

Tabell 13 viser faktorer brukt i 2017.
Tabell 13 – Korrelasjonsfaktor

<table>
<thead>
<tr>
<th>Gyldig fra</th>
<th>Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.11.2016</td>
<td>1,98</td>
</tr>
<tr>
<td>25.01.2017</td>
<td>2,08</td>
</tr>
<tr>
<td>27.04.2017</td>
<td>2,00</td>
</tr>
<tr>
<td>28.07.2017</td>
<td>1,96</td>
</tr>
<tr>
<td>26.10.2017</td>
<td>2,01</td>
</tr>
</tbody>
</table>

3.1.4 Usikkerhet i vanndata

Aker BP arbeider ut fra Norsk olje og gass sin retningslinje 085 (Anbefalte retningslinjer for prøvetaking og analyse av produsert vann). Prøver for å karakterisere produsert vann skal tas 2 ganger pr år, med 3 paralleller.

Aker BP samarbeider med Intertek West Lab i forbindelse med prøvetaking og analyse av produsert vann. Intertek West Lab er sertifisert iht ISO-IEC 17025 og laboratoriet håndterer rundt 30 000 prøver i året for analyse og testing.

I forbindelse med halvårlige miljøprøver og radioaktivitetsanalyser organiserer Intertek West Lab utsendelse av prøveflasker sammen med prosedyre for prøvetaking.

For olje i vann tas det hver måned to parallellprøver. Den ene prøven analyseres offshore og den andre sendes til Intertek West Lab, sammen med en prøve av fersk, stabilisert råolje til kalibrering av instrumentet. Prøven som blir sendt til land analyseres både ved UV-fluorescens og GC/FID. Dette gjøres for å sikre at analyse resultatene offshore ligger innenfor aksepterte feilmargener.

Intertek West Lab utførte en revisjon av prøvetaking og analyse av olje i vann ved Arjay metoden på Ula i juli 2013. Relativ usikkerhet ble da estimert til +/- 20% for resultater over 10 mg/l. For resultater under 10 mg/l er måleusikkerheten høyere, da instrumentet runder av til hele tall.

Usikkerhet i mengde olje til vann pr måned blir anslått til å være ca. 10 %, forutsatt at faktor er representativ. Dette er basert på usikkerhetsberegninger gjort for Ula i 2012, i forbindelse med redegjørelse for bruk av Arjay.

Prøvetaking

Det er forventet at selve prøvetakingen gir det største bidraget til usikkerhet i kjeden fra prøvetaking til ferdig resultat. Det er også denne som er viktigst å kvantifisere. Usikkerhetsmomenter ved prøvetaking av produsert vann inkluderer variasjoner i sammensetningen av produsert vann, svakheter ved prøvetakingspunktet, prøvetakingsprosedyrer (inkl. kompetanse hos personell som utfører prøvetakingen) og bruk av emballasje/oppbevaring frem til analyse-laboratoriet.

2 ISO 17025 - Generelle krav til prøve- og kalibreringslaboratoriers kompetanse
3 Ref redegjørelse sent til Miljødirektoratet i 2102: Changing from UV Arjay to GC-FID for OIW-Analyses, IWL 2012-06222
Disse usikkerhetsmomentene blir forsøkt kontrollert og redusert: Døgnprøver av produsert vann blir tatt som delprøver til forskjellige tidspunkter for å fange opp variasjoner gjennom døgnet. På Ula tas det 5 delprøver i løpet av et døgn, i perioder der produsert vannet slippes til sjø. Ula tar imot olje, vann og gass fra Tambar, Blane og Oselvar.

Kompetanse til personell sikres gjennom opplæring og bruk av kvalifisert personell offshore til å ta prøvene. I Aker BPs kompetansestyringssystem er det definert kompetansekrav for laboratorieteknikker, inklusiv krav relatert til analyse og prøvetaking. Laboratorierpersonell på Ula er innleid fra Intertek West Lab. Analyselaboratoriet sender ut prøveflasker med instruksjoner for miljøprøver og radioaktivitetsanalyser for å sikre ensartet prøvetaking og oppbevaring.

Volummåling av vannstrøm

På Ula måles vannvolumet med en FLUXUS ADM 7407 ultralyd strømningsmåler. Kalibreringsbevis fra installering angir en usikkerhet på +/-1,6% ved målinger +/-0,01m/s. Måleren ble installert i oktober 2012. Hvis denne måleren faller ut benyttes summen av målerne ut fra separatorene. Det er implementert vedlikeholdsrutiner for alle vannmengdemåler.

Usikkerhet i analysedata

Olje i vann innholdet fra Mærsk Interceptor blir målt med ett Turner TD500 apparat. Leverandørens oppgitt usikkerhet for apparatet er 1%.

Aker BP bruker Arjay-metoden ved analyse av olje i vann offshore. En daglig analyse av olje i vann med Arjay har en typisk usikkerhet på 25%. Dette er usikkerhet i enkelt målingen. Den målte olje i vann konsentrasjonen korrigeres med korrelasjonsfaktoren, som i seg selv har en usikkerhet på cirka 18%. Det daglige beregnede resultatet vil da få en høyere kombinert usikkerhet enn bare Arjay-målingen alene.

For en måned vil det beregnes et vektet snitt for utslippet av olje til sjø for hele perioden. Usikkerheten for dette gjennomsnittet er den kombinerte usikkerheten av alle enkeltmålingene fra perioden. Gjennomsnittets-usikkerhet er vesentlig lavere enn usikkerheten for enkeltmålingen på grunn av antallet målinger som inngår i snittet. Forutsatt at faktor er representativ er usikkerhet i mengde olje til vann pr måned anslått til å være 10%.

Usikkerhet for utslipp av radioaktive stoffer med produsert vann er beskrevet i egen rapport til Statens Strålevern.

For kjemikaliedata kommer i tillegg usikkerhet relatert til forbrukt mengde og andel som går til utslipp. Hvor stor andel av forbruket som går til utslipp baseres på tilgjengelig data for fordeling i olje og vann (analyseverdi for Log Pow) og best tilgjengelig kunnskap om vannmengde i systemene. Løseligheten i vann kan variere med vannkuttet.
3.2 Utslipp av olje

Figur 5 – Utslipp av olje og oljeholdig vann

Gjennomsnittlig vekted konsentrasjon for oljeinhold i utslipp av produsert vann i 2017 er 17,8 mg/l, opp fra 13,6 mg/l i 2016. Alle måneder har vi vært under myndighetens krav på maks 30 mg/l vekted snitt.

Mengden produsert vann i 2017 er noe mindre enn i 2016, mens mengden til utslipp i 2017 er omtrent lik da det i 2016 var omlag 11% reinjeksjon av produsert vann. Figur 4 viser historiske data for utslipp og reinjeksjon av produsert vann og Figur 5 viser utslipp av olje og utvikling for olje i vannverdier.

Tabell 14 – EEH-tabell 3.1 Utslipp av oljeholdig vann fra Ula feltet

<table>
<thead>
<tr>
<th>Vanntype</th>
<th>Totalt vannvolum [m3]</th>
<th>Midlere oljeinhold [mg/l]</th>
<th>Olje til sjø [tonn]</th>
<th>Injisert vann [m3]</th>
<th>Vann til sjø [m3]</th>
<th>Eksportert prod vann [m3]</th>
<th>Importert prod vann [m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produsert</td>
<td>2 693 410</td>
<td>17,83</td>
<td>47,76</td>
<td>4 268</td>
<td>2 678 658</td>
<td>10 484</td>
<td>0</td>
</tr>
<tr>
<td>Fortrengning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drenasje</td>
<td>39 600</td>
<td>9,38</td>
<td>0,37</td>
<td>0</td>
<td>39 600</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>2 733 010</td>
<td>17,71</td>
<td>48,13</td>
<td>4 268</td>
<td>2 718 258</td>
<td>10 484</td>
<td>0</td>
</tr>
<tr>
<td>Vanntype</td>
<td>Totalt vannvolum [m³]</td>
<td>Midlere oljeinnhold [mg/l]</td>
<td>Olje til sjø [tonn]</td>
<td>Injisert vann [m³]</td>
<td>Vann til sjø [m³]</td>
<td>Eksportert prod vann [m³]</td>
<td>Importert prod vann [m³]</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Produsert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortrengning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drenasje</td>
<td>1 027</td>
<td>2,15</td>
<td>0,00</td>
<td>0</td>
<td>1 027</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>1 027</td>
<td>2,15</td>
<td>0,00</td>
<td>0</td>
<td>1 027</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3.3 Utslipp av forbindelser i produsertvann

Prøver av produsert vann for analyse av tungmetaller og andre stoffer ble tatt i februar og september i 2017. Tre parallele analyser ligger til grunn for konsentrasjonene.

For analyseresultat med konsentrasjoner over deteksjonsgrensen er analyseverdiene brukt, i motsatt tilfelle er 50% av deteksjonsgrense brukt. Tabell 15 til Tabell 19 viser utslipp i kg for rapporteringsåret, samt konsentrasjon som legges til grunn ved utregning av mengder.

Aker BP har analysert naftensyre i 2017, men avventer rapportering til industrien har fått en forbedret/standardisert analysemetode.

3.3.1 Beskrivelse av metodikk for måling av tungmetallinnhold

Kvikksølv (Hg) er analysert i henhold til mod. NS-EN 1483.

PAH/NPD er analysert i henhold til metode ISO 28540:2011

Analysene er utført av Intertek West Lab.

3.3.2 Beskrivelse av metodikk for måling av løste organiske komponenter

- Olje i vann er analyser med GC-FID.
- Analysen av BTEX og organiske syrer er utført iht Intertek West Lab interne metode M-047.
- Alkylfenoler er analysert av iht Westlab intern metode M-038.
- NPD og PAH er analysert i henhold til metode ISO28540:2011

Analysene er utført av Intertek West Lab.

3.3.3 Mengde løste komponenter i produsertvann

Tabell 15 – EEH-tabell 3.2. Utslipp av tungmetaller med produsertvann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Konsentrasjon [g/m³]</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsen</td>
<td>0,00</td>
<td>9,96</td>
</tr>
<tr>
<td>Barium</td>
<td>20,49</td>
<td>54 884,08</td>
</tr>
<tr>
<td>Jern</td>
<td>24,15</td>
<td>64 679,94</td>
</tr>
<tr>
<td>Bly</td>
<td>0,02</td>
<td>56,95</td>
</tr>
<tr>
<td>Kadmium</td>
<td>0,00</td>
<td>2,41</td>
</tr>
<tr>
<td>Kobber</td>
<td>0,00</td>
<td>7,17</td>
</tr>
<tr>
<td>Krom</td>
<td>0,00</td>
<td>1,72</td>
</tr>
<tr>
<td>Kvikksølv</td>
<td>0,00</td>
<td>0,46</td>
</tr>
<tr>
<td>Nikkel</td>
<td>0,00</td>
<td>2,48</td>
</tr>
<tr>
<td>Zink</td>
<td>0,85</td>
<td>2 283,38</td>
</tr>
<tr>
<td>Sum</td>
<td>45,52</td>
<td>121 928,54</td>
</tr>
</tbody>
</table>

Tabell 16 – EEH-tabell 3.3.a Utslipp av BTEX-forbindelser i produsertvann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Konsentrasjon [g/m³]</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzen</td>
<td>5,85</td>
<td>15 662,98</td>
</tr>
<tr>
<td>Toluen</td>
<td>4,04</td>
<td>10 825,55</td>
</tr>
<tr>
<td>Etylbenzen</td>
<td>0,28</td>
<td>749,16</td>
</tr>
<tr>
<td>Xylen</td>
<td>4,57</td>
<td>12 234,93</td>
</tr>
<tr>
<td>Sum</td>
<td>14,74</td>
<td>39 472,62</td>
</tr>
</tbody>
</table>
Tabell 17 – EEH-tabell 3.3.b Utslipp av PAH-forbindelser i produsertvann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Konsentrasjon [g/m³]</th>
<th>Utslipp [kg]</th>
<th>NPD [kg]</th>
<th>EPA-PAH 14 [kg]</th>
<th>EPA-PAH 16 [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naftalen</td>
<td>0,71</td>
<td>1 902,63</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-naftalen</td>
<td>1,10</td>
<td>2 936,55</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2-naftalen</td>
<td>0,56</td>
<td>1 499,92</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3-naftalen</td>
<td>0,33</td>
<td>883,40</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenantren</td>
<td>0,06</td>
<td>168,54</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-Fenantren</td>
<td>0,07</td>
<td>200,73</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2-Fenantren</td>
<td>0,07</td>
<td>180,14</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3-Fenantren</td>
<td>0,01</td>
<td>26,56</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenzotiofen</td>
<td>0,01</td>
<td>14,78</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-dibenzotiofen</td>
<td>0,01</td>
<td>30,44</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2-dibenzotiofen</td>
<td>0,01</td>
<td>33,89</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3-dibenzotiofen</td>
<td>0,00</td>
<td>0,48</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaftyleen</td>
<td>0,00</td>
<td>2,53</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaften</td>
<td>0,00</td>
<td>12,94</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antrasen</td>
<td>0,00</td>
<td>0,38</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoren</td>
<td>0,04</td>
<td>97,29</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranten</td>
<td>0,00</td>
<td>1,04</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyren</td>
<td>0,00</td>
<td>6,35</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krysen</td>
<td>0,00</td>
<td>3,32</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(a)antrasen</td>
<td>0,00</td>
<td>0,54</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pyren</td>
<td>0,00</td>
<td>0,20</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(g,h,i)perylen</td>
<td>0,00</td>
<td>0,27</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(b)fluoranten</td>
<td>0,00</td>
<td>0,55</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(k)fluoranten</td>
<td>0,00</td>
<td>0,88</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeno(1,2,3-c,d)pyren</td>
<td>0,00</td>
<td>0,88</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenz(a,h)antrasen</td>
<td>0,00</td>
<td>0,17</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>2,99</td>
<td>8 005,40</td>
<td>7 878,07</td>
<td>127,34</td>
<td>2 198,51</td>
</tr>
</tbody>
</table>

Tabell 18 – EEH-tabell 3.3.c Utslipp av fenoler i produsertvann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Konsentrasjon [g/m³]</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenol</td>
<td>1,94</td>
<td>5 195,62</td>
</tr>
<tr>
<td>C1-Alkylfenoler</td>
<td>2,01</td>
<td>5 380,88</td>
</tr>
<tr>
<td>C2-Alkylfenoler</td>
<td>0,96</td>
<td>2 581,72</td>
</tr>
<tr>
<td>C3-Alkylfenoler</td>
<td>0,48</td>
<td>1 279,06</td>
</tr>
<tr>
<td>C4-Alkylfenoler</td>
<td>0,09</td>
<td>246,30</td>
</tr>
<tr>
<td>C5-Alkylfenoler</td>
<td>0,02</td>
<td>53,60</td>
</tr>
<tr>
<td>C6-Alkylfenoler</td>
<td>0,00</td>
<td>1,45</td>
</tr>
<tr>
<td>C7-Alkylfenoler</td>
<td>0,00</td>
<td>4,50</td>
</tr>
<tr>
<td>C8-Alkylfenoler</td>
<td>0,00</td>
<td>0,44</td>
</tr>
<tr>
<td>C9-Alkylfenoler</td>
<td>0,00</td>
<td>0,34</td>
</tr>
<tr>
<td>Sum</td>
<td>5,50</td>
<td>14 743,91</td>
</tr>
</tbody>
</table>
Tabell 19 – EEH-tabell 3.3.d Utslipp av organiske syrer i produsertvann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Konsentrasjon [g/m3]</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maursyre</td>
<td>0,55</td>
<td>1 473,61</td>
</tr>
<tr>
<td>Eddiksyre</td>
<td>10,43</td>
<td>27 944,72</td>
</tr>
<tr>
<td>Propionsyre</td>
<td>0,75</td>
<td>2 010,71</td>
</tr>
<tr>
<td>Butansyre</td>
<td>0,55</td>
<td>1 473,61</td>
</tr>
<tr>
<td>Pentansyre</td>
<td>0,55</td>
<td>1 473,61</td>
</tr>
<tr>
<td>Naftensyrer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>12,83</td>
<td>34 376,25</td>
</tr>
</tbody>
</table>

Brønnsammensetningen vil påvirke både mengden produsert vann og innholdet av naturlige komponenter i dette. Når Ula behandler brønnstrømmer fra flere felt er det naturlig at miljøanalyserne vil vise variasjoner i naturlige komponenter i produsert vannet som igjen gjenspeiler reservoarenes beskaffenhet.

For komponenter som har konsentrasjoner over deteksjonsgrensen er analyseverdiene brukt, i motsatt tilfelle er 50% av deteksjonsgrense registrert for komponenten.

Figur 6 – Historisk utvikling i utslipp av komponenter i produsertvann. Det var i 2015 en liten økning i mengde produsert vann til sjø sammenlignet med 2014, men utslipp av produsert vann i 2017 er omtrent på samme nivå som året før.

Spotprøver tas for å bestemme konsentrasjonen av komponenter i produsert vann, og påviste verdier kan variere avhengig av hvilke brønner som er på ved prøvetakingstidspunktet. Hva som er normal konsentrasjons-variasjon for enkeltkomponenter vil variere. Endring i utslipp av komponenter i 2017 skyldes variasjon av konsentrasjon innenfor normalområdet.
Figur 6 – Historisk utvikling i utslipp av komponenter i produsertvann.
4 Bruk og utslipp av kjemikalier

Kjemikalier benyttet til de ulike bruksområder er registrert i Aker BP’s kjemikalieregnskap. Data herfra, sammen med opplysninger fra HOCNF\(^4\), er benyttet til å estimere utslipp.

Tabell 20 viser forbruk og utslipp av kjemikalier i 2017 for Ula og Tambar. Figur 7 viser trend på forbruk og utslipp for begge feltene.

Forbruk på Blane, Oselvar og Tambar er inkludert i kategori H, kjemikalier fra andre produksjonsstader.

For Ula er det en nedgang for alle kjemikaliegrupper i 2017 sammenlignet med 2016. Dette henger hovedsakelig sammen med ca 10 % redusert produksjon i 2017 sammenlignet med 2016.

Det har blitt boret 2 brønner på Tambar i 2017 som gir økning i bore- og brønnkjemikalier samt produksjonskjemikalier i forhold til tidligere år. Forbruk av Hyspin Spindle Oil 10 i lukka system på Tambar er inkludert under hjelpekjemikalier. Forbruk er oppgitt i kapittel 4.7.

Variasjon i forbruk og utslipp som framgår av figuren er forklart nærmere under de forskjellige bruksområdene

4.1 Samlet forbruk og utslipp

Tabell 20 – EEH-tabell 4.1 Samlet forbruk og utslipp av kjemikalier for Ula og Tambar, inklusive utslipp/reinjeksjon fra Blane og Oselvar.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Bruksområde</th>
<th>Forbruk [tonn]</th>
<th>Utslipp [tonn]</th>
<th>Injisert [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bore- og brønnkjemikalier</td>
<td>244,90</td>
<td>124,48</td>
<td>0,00</td>
</tr>
<tr>
<td>B</td>
<td>Produksjonskjemikalier</td>
<td>793,09</td>
<td>319,82</td>
<td>0,43</td>
</tr>
<tr>
<td>C</td>
<td>Injeksjonsvannkjemikalier</td>
<td>348,15</td>
<td>175,98</td>
<td>172,17</td>
</tr>
<tr>
<td>D</td>
<td>Rørledningskjemikalier</td>
<td>0,42</td>
<td>0,42</td>
<td>0,00</td>
</tr>
<tr>
<td>E</td>
<td>Gassbehandlingskjemikalier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Hjelpekjemikalier</td>
<td>5,62</td>
<td>2,20</td>
<td>0,00</td>
</tr>
<tr>
<td>G</td>
<td>Kjemikalier som tilsettes eksportstrømmen</td>
<td>33,19</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>H</td>
<td>Kjemikalier fra andre produksjonssteder</td>
<td>0,00</td>
<td>326,75</td>
<td>0,26</td>
</tr>
<tr>
<td>K</td>
<td>Reservoarstyring</td>
<td>0,07</td>
<td>0,07</td>
<td>0,00</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>1 425,43</td>
<td>949,70</td>
<td>172,84</td>
</tr>
</tbody>
</table>

\(^4\) Harmonized Offshore Chemical Notification Format
Tambar

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Bruksområde</th>
<th>Forbruk [tonn]</th>
<th>Utslipp [tonn]</th>
<th>Injsert [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bore- og brønnkjemikalier</td>
<td>2 572,71</td>
<td>664,21</td>
<td>0,01</td>
</tr>
<tr>
<td>B</td>
<td>Produksjonskjemikalier</td>
<td>23,48</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>C</td>
<td>Injeksjonsvannkjemikalier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Rørledningskjemikalier</td>
<td>57,55</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>E</td>
<td>Gassbehandlingskjemikalier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Hjelpekjemikalier</td>
<td>8,93</td>
<td>3,28</td>
<td>0,00</td>
</tr>
<tr>
<td>G</td>
<td>Kjemikalier som tilsettes eksportstrømmen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Kjemikalier fra andre produksjonssteder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Reservoarstyring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>2 662,67</td>
<td>667,49</td>
<td>0,01</td>
</tr>
</tbody>
</table>

ULA

![Graph showing forbruk, utslipp, and reinjeksjon from 2006 to 2017]

TAMBAR
Figur 7 - Samlet forbruk og utslipp av kjemikalier, Ula øverst og Tambar nederst

4.2 Bore- og brønnkjemikalier (Bruksområde A)

Forbruk, utslipp og reinjeksjon av bore- og brønnkjemikalier er beregnet av boreslam- og sementingeniørene på plattformen som logger det daglige forbruk og beregner utslipp ved hjelp av massebalanser.

Det er ikke boret på Ula men det er rapportert boring av 2 brønner på Tambar i 2017, der forbruk og utslipp er rapportert for 1 brønn som er ferdig komplettert i 2017, mens den andre er kun forbruk og utslipp fra topphullsborring inkludert i denne årsrapporten.

Det er ikke laget noen figur for Tambar da det er mer enn 10 år siden sist det ble boret her. Forbruk av bore- og brønnkjemikalier på Ula er knyttet til brønnintervensjoner.

ULA

Figur 8 - Samlet forbruk og utslipp av bore- og brønnkjemikalier for Ula
4.3 Produksjonskjemikalier (Bruksområde B)

Forbruket av produksjonskjemikalier logges daglig av laboratorieteknikker ombord. I tillegg føres månedlig oversikt over innkjøp av alle produksjonskjemikalier. For å beregne det faktiske utslippet er det tatt hensyn til andel produsertvann reinjiser, vurderinger på bakgrunn av produktens oktanol/vann fordeling samt interne studier.

Tabell 36 til

Tabell 38 viser produksjonskjemikalier per felt for Blane, Oselvar og Ula. Tambar er inkludert i Tabell 47.

Mengde produsertvann til utslipp i 2017 er på omtrent samme nivå som året før. Forbruk og utslipp av produksjonskjemikalier er også omtrentlig på samme nivå som i fjor på Ula.

Økt forbruk på Tambar i 2017 skyldes at produksjonen økte med omtrent 40 % sammenlignet med året før. Seint i 2016 vurderte man risikoen av scale til å være mer prekær, dette pga økende vannkutt, og man re-introduiserte derfor scale inhibitor i januar 2017 som forklarer bruk av produksjonskjemikalier på Tambar i 2017.

ULA

![Graph showing Ula and Tambar production chemicals]

Tambar
4.4 **Injeksjonskjemikalier (Bruksområde C)**

Injeksjon av vann (produsert vann eller sjøvann) i reservoaret brukes som trykkstøtte, og bidrar dermed til å øke oljeproduksjonen. For å unngå problemer med avleiring når sjøvann og produsert vann blandes blir avleiringshemmer tilsatt produsert vann som skal injiseres. På grunn av problem med injeksjonsanlegget ble nesten alt produsertvannet sluppet til sjø i 2017. I 2016 var det omlag 11% reinjeksjon av produsert vann på Ula.

Både forbruk og utslipp av injeksjonskjemikalier er noe redusert i 2017 sammenlignet med 2016 grunnet nedetid på sjøvannsinjeksjon systemet på 1,5 måned i sommer.

Det er ikke benyttet injeksjonskjemikalier på Tambar i 2017.

ULA

4.5 **Rørledningskjemikalier (Bruksområde D)**

I 2014 var det forbruk og utslipp av rørledningskjemikalier på Ula i forbindelse med klargjøring for gassinjeksjon på Tambar. Rørledningen UGIP går fra Gyda til Ula, og det ble utført en piggeoperasjon for å bekrefte at rørledningen kan brukes ved gassinjeksjon. Rørledningen ble konservert med sjøvann tilsatt kjemikalier. Tømning og tørking av rørledning ble utført i september 2017, forbruk og utslipp av kjemikalier er rapportert under bruksområde D.
Totalt forbruk av friksjonsreduserende middel i 2017 er noe redusert fra i fjor og det er kun brukt produkt med gul miljøklassifisering.

4.6 Gassbehandlingskjemikalier (Bruksområde E)

Det er ikke benyttet gassbehandlingskjemikalier på Ula eller Tambar i 2017.

4.7 Hjelpekjemikalier (Bruksområde F)

Det er skiftet ut innhold i MEG og TEG systemer i 2016, og dette bidrar til både høyt forbruk og utslipp dette året.

Brannskum er et beredskapskjemikalie og miljømessig er dette klassifisert som svart. Fra og med 2014 er forbruk og utslipp av brannskum inkludert i hjelpekjemikalier, og dette vil da medføre utslipp av svart produkt under hjelpekjemikalier. Status for substasjon er oppgitt i kapittel 1.4.

Det er brukt 38,2 kg brannskum på Tambar i 2017. På Ula feltcenter er det brukt og sluppet ut totalt 272,4 kg. Forbruk og utslipp av brannskum er relatert til funksjonstest og analyse av beredskapssystemer. Akutt utslipp av brannskum på Tambar er rapportert under kapittel 8.2.

Kjemikalier i lukket system

På Ulafeltet er alle reservoarene til lukka systemer under 3000 kg. I 2017 er det heller ikke registrert forbruk over 3000 kg på noen av systemene bortsett fra system HU-0103 på D-14, der det er brukt Brayco Micronic SV/3, Gult Y2 produkt. Forbruk er rapportert under hjelpekjemikalier.

På Tambar er Hyspin Spindle Oil 10 brukt i (multi-phase pump MPP, som bidrar til å opprettholde produksjon fra Tambar. Produktet ble søkt inn i 2015 og var unntatt krav om HOCNF ut 2017 på grunn av usikkerhet rundt forbruk. Arbeid med å fremskaffe HOCNF ble igangsatt i 2016 og vi innehar nå HOCNF dokumentasjon. Forbruk i lukka system av Hyspin Spindle oil 10 er inkludert i bruksområde D.

Forbruk av kjemikalier i lukka systemer på inneleder borerigg. Mærsk Interceptor er beskrevet i Aker BP’s årsrapport for leteboring for å unngå dobbelrapportering.

ULA
4.8 **Kjemikalier som tilsettes eksportstrømmen (Bruksområde G)**

Eventuelle utslipp av korrosjonshemmere skjer ved Teesideterminalen i England.

Som hovedregel vil endringene følge endringene i volum som blir eksportert. I 2014 økte forbruket mer enn økking i produksjon skulle tils. Årsaken til dette er at ventil for kjemikaliedosering ble skiftet i 2013, noe som medførte bedre regulering av mengder. Korrosjonsinhibitor i eksporten ble tidligere underdosert.

Tambar har ikke eksportkjemikalier.
4.9 Kjemikalier fra andre produksjonssteder (Bruksområde H)

I 2012 var det en økning på kjemikalier til utslipp og reinjeksjon grunnet introduksjon av Oselvar prosess strøm i april. Det er i hovedsak økt bruk av MEG ved oppstart og nedstengning av Oselvar som er årsaken til denne økningen. MEG brukes for å hindre hydratdannelse.

Kjemikalieforbruket på både Blane, Oselvar og Tambar økte i 2015. Fall i temperatur gir økt risiko for hydratdannelse og fører også til økt behov for MEG. Kjemikalieutslipp i 2017 er marginalt lavere enn 2016.

4.10 Sporstoffer (Bruksområde K)

Det injiseres vann og gass på Ula feltet for å opprettholde reservoartrykk og for å fortrenge olje. Ved bruk av sporstoff i det som injiseres som trykkstøtte er det mulig å beregne hvordan gass og vann fordeler seg i reservoaret. Denne informasjonen kan så brukes til å optimalisere injeksjonen til reservoaret, og dermed optimalisere utvinningen og energibruken på feltet.

Det er brukt og sluppet ut 0,065 tonn vannsporingsstoff på Ula i 2017, som vist i Tabell 20.
5 Miljøvurdering av kjemikalier

Basert på stoffenes iboende egenskaper, er disse gruppert som følger:

- **Svarte**: Kjemikalier som det kun unntaksvis gis utslippstillatelse for (gruppe 1-4)
- **Røde**: Kjemikalier som skal prioriteres spesielt for substitusjon (gruppe 6-8)
- **Gule**: Kjemikalier som har akseptable miljøegenskaper ("Andre kjemikalier")
- **Grønne**: PLONOR-kjemikalier og vann

De ulike bruksområdene for kjemikaliene er i Tabell 21 oppsummert med bidrag av komponenter i miljøklassene grønne, gule, røde og svarte.

5.1 Oppsummering av kjemikalier

Datagrunnlag for beregninger er utslippsmengder per miljøkategori er forbruk rapportert i kapittel 4 i årsrapporten. Figur 15 viser fordeling på utfasingsgrupper for året på Ula og Tabell 21 viser mengder for rapporteringsåret for Ula og Tambar. Figur 16 viser historisk utvikling for hver fargekategori.

![Diagram](image)

Figur 15 – Fordeling på utfasingsgrupper for Ula og Tambar

<table>
<thead>
<tr>
<th>Utslipp</th>
<th>Kategori</th>
<th>Miljødirektoratets fargekategori</th>
<th>Mengde brukt [tonn]</th>
<th>Mengde sluppet ut [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vann</td>
<td>200</td>
<td>Grønn</td>
<td>713,5322</td>
<td>534,4301</td>
</tr>
<tr>
<td>Stoff på PLONOR listen</td>
<td>201</td>
<td>Grønn</td>
<td>290,4241</td>
<td>253,2738</td>
</tr>
<tr>
<td>REACH Annex IV</td>
<td>204</td>
<td>Grønn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REACH Annex V</td>
<td>205</td>
<td>Grønn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangler testdata</td>
<td>0</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additivpakker som er unntatt krav om testing og ikke er testet</td>
<td>0.1</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoff som er antatt å være eller er arvestoffskadelige eller reproduksjonsskadelige</td>
<td>1.1</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoff på prioritetslisten eller på OSPARS prioritetsliste</td>
<td>2</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoff på REACH kandidatliste</td>
<td>2.1</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bionedbrytarbarhet < 20% og log Pow >= 5</td>
<td>3</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bionedbrytarbarhet < 20% og giftighet EC50 eller LC50 <= 10 mg/l</td>
<td>4</td>
<td>Svart</td>
<td>0,0095</td>
<td>0,0095</td>
</tr>
<tr>
<td>To av tre kategorier: Bionedbrytarbarhet < 60%, log Pow >= 3, EC50 eller LC50 <= 10 mg/l</td>
<td>6</td>
<td>Rød</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utslipp</td>
<td>Kategori</td>
<td>Miljødirektoratets fargekategori</td>
<td>Mengde brukt [tonn]</td>
<td>Mengde sluppet ut [tonn]</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Vann</td>
<td>200</td>
<td>Grønn</td>
<td>186,8195</td>
<td>34,8102</td>
</tr>
<tr>
<td>Stoff på PLONOR listen</td>
<td>201</td>
<td>Grønn</td>
<td>1 843,6880</td>
<td>561,9474</td>
</tr>
<tr>
<td>REACH Annex IV</td>
<td>204</td>
<td>Grønn</td>
<td>0,4000</td>
<td>0,0000</td>
</tr>
<tr>
<td>REACH Annex V</td>
<td>205</td>
<td>Grønn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangler testdata</td>
<td>0</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additivpakker som er unntatt krav om testing og ikke er testet</td>
<td>0.1</td>
<td>Svart</td>
<td>0,0089</td>
<td>0,0000</td>
</tr>
<tr>
<td>Stoff som er antatt å være eller er arvestoffskadelige eller reproduksjonsskadelige</td>
<td>1.1</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoff på prioritetslisten eller på OSPARS prioritetsliste</td>
<td>2</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoff på REACH kandidatliste</td>
<td>2.1</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20% og log Pow >= 3</td>
<td>3</td>
<td>Svart</td>
<td>4,0999</td>
<td>0,0000</td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20% og giftighet EC50 eller LC50 <= 10 mg/l</td>
<td>4</td>
<td>Svart</td>
<td>0,0013</td>
<td>0,0013</td>
</tr>
<tr>
<td>To av tre kategorier: Bionedbrytbarhet < 60%, log Pow >= 3, EC50 eller LC50 <= 10 mg/l</td>
<td>6</td>
<td>Rød</td>
<td>1,5916</td>
<td>0,0000</td>
</tr>
<tr>
<td>Uorganisk og EC50 eller LC50 <= 1 mg/l</td>
<td>7</td>
<td>Rød</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20%</td>
<td>8</td>
<td>Rød</td>
<td>21,4339</td>
<td>0,0000</td>
</tr>
<tr>
<td>Polymerere som er unntatt testkrav og ikke er testet</td>
<td>9</td>
<td>Rød</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andre Kjemikalier</td>
<td>100</td>
<td>Gul</td>
<td>554,1671</td>
<td>55,8657</td>
</tr>
<tr>
<td>Gul underkategori 1 – Forventes å biodegradere fullstendig</td>
<td>101</td>
<td>Gul</td>
<td>3,7844</td>
<td>0,3077</td>
</tr>
<tr>
<td>Gul underkategori 2 – Forventes å biodegradere til stoffer som ikke er miljøfarlige</td>
<td>102</td>
<td>Gul</td>
<td>46,6316</td>
<td>14,5533</td>
</tr>
<tr>
<td>Gul underkategori 3 – Forventes å biodegradere til stoffer som kan være miljøfarlige</td>
<td>103</td>
<td>Gul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaliumhydroksid, natriumhydroksid, saltsyre, svovelsyre, salpetersyre og fosforsyre</td>
<td>104</td>
<td>Gul</td>
<td>0,0442</td>
<td>0,0000</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>2 662,6704</td>
<td>667,4856</td>
</tr>
</tbody>
</table>
Figur 16 - Historisk utvikling av utslipp av grønn, gul, rød og svart kategori for Ula

\(^5\) I 2012 ble brannskum feilaktig rapportert som hjelpekjemikalier. I 2013 ble dette rapportert i egen tabell, ihht gjeldende retningslinjer for rapportering for det året.
6 Bruk og utslipp av miljøfarlige forbindelser

6.1 Kjemikalier som inneholder miljøfarlige forbindelser
Data vedrørende kapittel 6.1 er konfidensiell informasjon om komponenter i kjemikalier og er unntatt offentlighet. Det inkluderer derfor ikke denne rapporten. Dette er iht. Offentlighetslovens § 5a, jf Forvaltningslovens § 13, 1. Ledd nr 2.

6.2 Miljøfarlige forbindelser som tilsetninger i produkter
Produkt med tilsetninger av miljøfarlige forbindelser i 2017 er vist i Tabell 22
Beregninger er gjort med utgangspunkt i konsentrasjoner gitt i HOCNF.

Tabell 22 – EEH-tabell 6.2 Stoff som står på Prioritetslisten som tilsetning i produkter (kg)
| Ula | NA |
| Tambar | NA |

6.3 Miljøfarlige forbindelser som forurensning i produkter
Produkt med forurensing av miljøfarlige forbindelser i 2017 er vist i Tabell 23.
Beregninger er gjort med utgangspunkt i konsentrasjoner gitt i HOCNF.

Tabell 23 - EEH Tabell 6.3 Stoff som står på Prioritetslisten som forurensinger i produkter (kg)
<p>| Ula | NA |</p>
<table>
<thead>
<tr>
<th>Stoff/komponent</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>K</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ärsen (As)</td>
<td>1,6378</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,6378</td>
</tr>
<tr>
<td>Bisfenol A (BPA)</td>
<td></td>
</tr>
<tr>
<td>Bly (Pb)</td>
<td>2,0977</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,0977</td>
</tr>
<tr>
<td>Bromerte flammehemmere</td>
<td></td>
</tr>
<tr>
<td>Dekametylsyklopentasiloksan (D5)</td>
<td></td>
</tr>
<tr>
<td>Dietylheksyltalat (DEHP)</td>
<td></td>
</tr>
<tr>
<td>1,2 dikloreten (EDC)</td>
<td></td>
</tr>
<tr>
<td>Dioksiner (PCDD/PCDF)</td>
<td></td>
</tr>
<tr>
<td>Dodekylfenol</td>
<td></td>
</tr>
<tr>
<td>Heksaklorbenzen (HCB)</td>
<td></td>
</tr>
<tr>
<td>Kadmium (Cd)</td>
<td>8,1839</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,1839</td>
</tr>
<tr>
<td>Klorerte alkylbenzener (KAB)</td>
<td></td>
</tr>
<tr>
<td>Klorparafiner kortkjedete (SCCP)</td>
<td></td>
</tr>
<tr>
<td>Klorparafiner mellomkjedete (MCCP)</td>
<td></td>
</tr>
<tr>
<td>Krom (Cr)</td>
<td>1,2959</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2959</td>
</tr>
<tr>
<td>Kvikksølv (Hg)</td>
<td>0,0338</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0338</td>
</tr>
<tr>
<td>Muskxylen</td>
<td></td>
</tr>
<tr>
<td>Nonylfenol, oktylfenol og deres etoksilater (NF, NFE, OF, OFE)</td>
<td></td>
</tr>
<tr>
<td>Oktametylsyklotetrasiloksan (D4)</td>
<td></td>
</tr>
<tr>
<td>Pentaklorfenol (PCP)</td>
<td></td>
</tr>
<tr>
<td>PFOA</td>
<td></td>
</tr>
<tr>
<td>PFOS og PFOS-relaterte forbindelser</td>
<td></td>
</tr>
<tr>
<td>Langkjedete perfluorerte syrer (C9-PFCA - C14-PFCA)</td>
<td></td>
</tr>
<tr>
<td>Polyklorerte bifenyler (PCB)</td>
<td></td>
</tr>
<tr>
<td>Polysykliske aromatiske hydrokarboner (PAH)</td>
<td></td>
</tr>
<tr>
<td>Tensider (DTDMAC, DSDMAC, DHTMAC)</td>
<td></td>
</tr>
<tr>
<td>Tetrakloreten (PER)</td>
<td></td>
</tr>
<tr>
<td>Tributyl- og trifenyliinnforbindelser (TBT og TFT)</td>
<td></td>
</tr>
<tr>
<td>Triklorbenzen (TCB)</td>
<td></td>
</tr>
<tr>
<td>Trikloreten (TRI)</td>
<td></td>
</tr>
<tr>
<td>Triklosan</td>
<td></td>
</tr>
<tr>
<td>Tris(2-kloret)jfosfat (TCEP)</td>
<td></td>
</tr>
<tr>
<td>2,4,6 tri-tert-butylfenol (TTB-fenol)</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>13,2492</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13,2492</td>
</tr>
</tbody>
</table>
7 Utslipp til luft

For beregning av CO₂-utslipp fra brenngass i turbiner benyttes feltspesifikk faktor basert på karbonmassefraksjonsmetoden (f.o.m 1998). For beregning av CO₂-utslipp fra fakkel og diesel til motorer og turbiner benyttes faktorer gitt i tillatelse til utslipp av klimavirkende utslipp.

For Mærsk Interceptor er det benyttet målt utslippsfaktor for NOx.

Tambar får strøm levert fra Ula.

7.1 Forbrenningsprosesser

Kilder for utslipp til luft relatert til forbrenningsprosesser er:

- Turbiner (gass)
- Fakkel
- Dieselmotorer
- Dieselturbiner

Utslippsfaktorene benyttet er:

<table>
<thead>
<tr>
<th>Fakkel</th>
<th>CO₂ Factor (Tonnes/Sm³)</th>
<th>NOX Factor (kg/Sm³)</th>
<th>CH₄ Factor (kg/Sm³)</th>
<th>NMVOC Factor (kg/Sm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,00372</td>
<td>0,00140</td>
<td>0,0002</td>
<td>0,000060</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lav NOx Turbin: UGU</th>
<th>Fuel type</th>
<th>CO₂ Factor Gas (Tonnes/Sm³)</th>
<th>NOX Factor Gas (kg/Sm³)</th>
<th>CH₄ Factor Gas (kg/Sm³)</th>
<th>NMVOC Factor Gas (kg/Sm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS</td>
<td>0,0025313</td>
<td>0,00180</td>
<td>0,0009</td>
<td>0,00024</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turbin: GT35B+ A/B/C</th>
<th>Fuel type</th>
<th>CO₂ Factor Gas (Tonnes/Sm³)</th>
<th>NOX Factor Gas (kg/Sm³)</th>
<th>CH₄ Factor Gas (kg/Sm³)</th>
<th>NMVOC Factor Diesel (kg/kg)</th>
<th>SOX Factor Diesel (kg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIESEL</td>
<td>0,00317</td>
<td>0,02350</td>
<td>0,000029</td>
<td>0,003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAS</td>
<td>0,0026245</td>
<td>0,01030</td>
<td>0,001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor</th>
<th>Fuel type</th>
<th>CO₂ Factor Diesel (Tonnes/kg)</th>
<th>NOX Factor Diesel (kg/kg)</th>
<th>NMVOC Factor Diesel (kg/kg)</th>
<th>SOX Factor Diesel (kg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIESEL</td>
<td>0,00317</td>
<td>0,04500</td>
<td>0,005</td>
<td>0,003</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor Mærsk Interceptor</th>
<th>Fuel type</th>
<th>CO₂ Factor Diesel (Tonnes/kg)</th>
<th>NOX Factor Diesel (kg/kg)</th>
<th>NMVOC Factor Diesel (kg/kg)</th>
<th>SOX Factor Diesel (kg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIESEL</td>
<td>0,00317</td>
<td>0,03610</td>
<td>0,0050</td>
<td>0,0028</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Fakkel</td>
<td>0</td>
<td>6 210 734</td>
<td>23 104</td>
<td>8,70</td>
<td>0,37</td>
</tr>
<tr>
<td>Turbiner (DLE)</td>
<td>0</td>
<td>18 720 096</td>
<td>47 386</td>
<td>33,70</td>
<td>4,49</td>
</tr>
<tr>
<td>Turbiner (SAC)</td>
<td>1 121</td>
<td>43 904 420</td>
<td>118 780</td>
<td>480,24</td>
<td>10,57</td>
</tr>
<tr>
<td>Motorer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fyrte kjeler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brønntest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brønnopprenskning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avblødning over brennerbom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andre kilder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum alle kilder</td>
<td>1 121</td>
<td>68 835 251</td>
<td>189 270</td>
<td>522,63</td>
<td>15,44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakkel</td>
<td>0</td>
<td>18 720 096</td>
<td>47 386</td>
<td>33,70</td>
<td>4,49</td>
<td>17,04</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,000000</td>
<td>0,00</td>
</tr>
<tr>
<td>Turbiner (DLE)</td>
<td>1 489</td>
<td>0</td>
<td>4 721</td>
<td>53,77</td>
<td>7,45</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,000000</td>
<td>0,00</td>
</tr>
<tr>
<td>Turbiner (SAC)</td>
<td></td>
</tr>
<tr>
<td>Motorer</td>
<td></td>
</tr>
<tr>
<td>Fyrte kjeler</td>
<td></td>
</tr>
<tr>
<td>Brønntest</td>
<td></td>
</tr>
<tr>
<td>Brønnopprenskning</td>
<td></td>
</tr>
<tr>
<td>Avblødning over brennerbom</td>
<td></td>
</tr>
<tr>
<td>Andre kilder</td>
<td></td>
</tr>
<tr>
<td>Sum alle kilder</td>
<td>1 489</td>
<td>0</td>
<td>4 721</td>
<td>53,77</td>
<td>7,45</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,000000</td>
<td>0,00</td>
</tr>
</tbody>
</table>
Utslippene av NOx fra ener Gianlegg var 522,63 tonn pluss 53,77 tonn fra Mærsk Interceptor i 2017, noe som er innenfor tillatelsens grense på 750 tonn/år. Rapporterte utslipp av NOx i denne rapporten er basert på utslippsfaktor for å sikre overensstemmelse med tall som rapporteres til Toll- og avgiftsdirektoratet.

Forbruk av brenngass er direkte knyttet til kraftgenerering.

![Image](image.png)

Figur 17 - Utslipp til luft

7.2 Utslipp ved lagring og lasting av olje

Oljen transporteres i rørledning til Teeside via Ekofisk. Det foregår ingen lasting og lagring av råolje på Ula.

7.3 Diffuse utslipp og kaldventilering

Diffuse utslipp er estimert ut fra en gjennomgang av prosessen. Norsk olje og Gass sin håndbok for kvantifisering av direkte metan og nmVOC utslipp er benyttet.

<table>
<thead>
<tr>
<th>Innretning</th>
<th>Utslipp CH4 [tonn]</th>
<th>Utslipp nmVOC [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULA PP</td>
<td>96,54</td>
<td>25,64</td>
</tr>
<tr>
<td>SUM</td>
<td>96,54</td>
<td>25,64</td>
</tr>
</tbody>
</table>

7.4 Bruk og utslipp av gassporstoffer

Det er ikke injisert gass- og vannsporingsstoff på Ula i 2017.

<table>
<thead>
<tr>
<th>Tabell 26 - EEH tabell 7.4 - Forbruk og utslipp av gassporstoffer</th>
</tr>
</thead>
</table>
8 Utilisiktede utslipp

Beskrivelse av årsak og korrigerende tiltak for akutt olje- og kjemikalieuxslipp er inkludert i Tabell 30.

8.1 Utilisiktede oljeutslipp

Det har vært ett utilisiktede utslipp av diesel på Ula i 2017.

Det har ikke vært utilisik tet utslipp av olje på Tambar i 2017.

Tabell 27 – EEH-tabell 8.1 Oversikt over utilisiktede utslipp av olje i løpet av rapporteringsåret

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Antall: < 0,05 m3</th>
<th>Antall: 0,05 - 1 m3</th>
<th>Antall: > 1 m3</th>
<th>Volum [m³]: < 0,05 m³</th>
<th>Volum [m³]: 0,05 - 1 m3</th>
<th>Volum [m³]: > 1 m3</th>
<th>Volum [m³]: Totalt volum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td></td>
<td></td>
<td></td>
<td>0,1500</td>
<td>0,1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td>0,1500</td>
<td>0,1500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tambar

NA

Figur 18 - Antall utilisiktede oljeutslipp på Ula og Tambar

8.2 Utilisiktet utslipp av kjemikalier

Det har vært 1 utilisiktet utslipp av kjemikalier både på Ula og Tambar i 2017.

Tabell 28 – EEH- Tabell 8.2 Oversikt over akutt forurensning av kjemikalier og borevæske i løpet av rapporteringsåret

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Antall: < 0,05 m3</th>
<th>Antall: 0,05 - 1 m3</th>
<th>Antall: > 1 m3</th>
<th>Volum [m³]: < 0,05 m³</th>
<th>Volum [m³]: 0,05 - 1 m3</th>
<th>Volum [m³]: > 1 m3</th>
<th>Volum [m³]: Totalt volum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kjemikalier</td>
<td></td>
<td></td>
<td></td>
<td>0,7400</td>
<td>0,7400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td>0,7400</td>
<td>0,7400</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabell 29 – EEH- Tabell 8.3 Utilisiktede utslipp av stoff fordelt etter deres miljøegenskaper

Ula

<table>
<thead>
<tr>
<th>Utslipp</th>
<th>Kategori</th>
<th>Miljødirektoratets fargekategori</th>
<th>Mengde sluppet ut (tonn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vann</td>
<td>200</td>
<td>Grønn</td>
<td>0,7611</td>
</tr>
<tr>
<td>Stoff på PLONOR listen</td>
<td>201</td>
<td>Grønn</td>
<td></td>
</tr>
<tr>
<td>REACH Annex IV</td>
<td>204</td>
<td>Grønn</td>
<td></td>
</tr>
<tr>
<td>REACH Annex V</td>
<td>205</td>
<td>Grønn</td>
<td></td>
</tr>
<tr>
<td>Mangler testdata</td>
<td>0</td>
<td>Svart</td>
<td>0,0090</td>
</tr>
<tr>
<td>Additivpakker som er unntatt krav om testing og ikke er testet</td>
<td>0.1</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Stoff som er antatt å være eller er arvestoffskadelige eller reproduksjonsskadelige</td>
<td>1.1</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Stoff på prioritetslisten eller på OSPARS prioritetsliste</td>
<td>2</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Stoff på REACH kandidatliste</td>
<td>2.1</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20% og log Pow >= 5</td>
<td>3</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20% og giftighet EC50 eller LC50 <= 10 mg/l</td>
<td>4</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>To av tre kategorier: Bionedbrytbarhet < 20%, log Pow >= 3, EC50 eller LC50 <= 10 mg/l</td>
<td>6</td>
<td>Rød</td>
<td></td>
</tr>
<tr>
<td>Uorganisk og EC50 eller LC50 <= 1 mg/l</td>
<td>7</td>
<td>Rød</td>
<td>0,1254</td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20%</td>
<td>8</td>
<td>Rød</td>
<td></td>
</tr>
<tr>
<td>Polymere som er unntatt testkrav og ikke er testet</td>
<td>9</td>
<td>Rød</td>
<td></td>
</tr>
<tr>
<td>Andre Kjemikalier</td>
<td>100</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Gul underkategori 1 – Forventes å biodegradere fullstendig</td>
<td>101</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Gul underkategori 2 – Forventes å biodegradere til stoffer som ikke er miljøfarlige</td>
<td>102</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Gul underkategori 3 – Forventes å biodegradere til stoffer som kan være miljøfarlige</td>
<td>103</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Kaliumhydroksid, natriumhydroksid, saltsyre, svovelsyre, salpetersyre og fosforsyre</td>
<td>104</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td></td>
<td>0,8954</td>
</tr>
</tbody>
</table>
Utslippsgjenomgang Ula og Tambar 2017

<table>
<thead>
<tr>
<th>Utslipp</th>
<th>Kategori</th>
<th>Miljødirektoratets fargekategori</th>
<th>Mengde sluppet ut [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vann</td>
<td>200</td>
<td>Grønn</td>
<td></td>
</tr>
<tr>
<td>Stoff på PLONOR listen</td>
<td>201</td>
<td>Grønn</td>
<td>0,1771</td>
</tr>
<tr>
<td>REACH Annex IV</td>
<td>204</td>
<td>Grønn</td>
<td></td>
</tr>
<tr>
<td>REACH Annex V</td>
<td>205</td>
<td>Grønn</td>
<td></td>
</tr>
<tr>
<td>Mangler testdata</td>
<td>0</td>
<td>Svart</td>
<td>0,0000</td>
</tr>
<tr>
<td>Additivpakker som er unntatt krav om testing og ikke er testet</td>
<td>0.1</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Stoff som er antatt å være eller er arvestoffskadelige eller reproduksjonsskadelige</td>
<td>1.1</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Stoff på prioritetslisten eller på OSPARs prioritetsliste</td>
<td>2</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Stoff på REACH kandidatliste</td>
<td>2.1</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20% og log Pow >= 5</td>
<td>3</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20% og giftighet EC50 eller LC50 <= 10 mg/l</td>
<td>4</td>
<td>Svart</td>
<td>0,0107</td>
</tr>
<tr>
<td>To av tre kategorier: Bionedbrytbarhet < 60%, log Pow >= 3, EC50 eller LC50 <= 10 mg/l</td>
<td>6</td>
<td>Rød</td>
<td></td>
</tr>
<tr>
<td>Uorganisk og ECS0 eller LC50 <= 1 mg/l</td>
<td>7</td>
<td>Rød</td>
<td>0,0004</td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20%</td>
<td>8</td>
<td>Rød</td>
<td></td>
</tr>
<tr>
<td>Polymere som er unntatt testkrav og ikke er testet</td>
<td>9</td>
<td>Rød</td>
<td></td>
</tr>
<tr>
<td>Andre Kjemikalier</td>
<td>100</td>
<td>Gul</td>
<td>0,1198</td>
</tr>
<tr>
<td>Gul underkategori 1 – Forventes å biodegradere fullstendig</td>
<td>101</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Gul underkategori 2 – Forventes å biodegradere til stoffer som ikke er miljøfarlige</td>
<td>102</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Gul underkategori 3 – Forventes å biodegradere til stoffer som kan være miljøfarlige</td>
<td>103</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Kaliumhydroksid, natriumhydroksid, saltsyre, svovelsyre, salpetersyre og fosforsyre</td>
<td>104</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td></td>
<td>0,3080</td>
</tr>
</tbody>
</table>

Figur 19 - Antall utilsiktede kjemikaleutslipp på Ula og Tambar
Tabell 30 – Beskrivelse av årsak og korrigerende tiltak ved akutt utslipp til sjø

<table>
<thead>
<tr>
<th>Dato</th>
<th>Hendelse</th>
<th>Felt</th>
<th>Mengde til sjø</th>
<th>Årsak</th>
<th>Korrigerende tiltak</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10.2017</td>
<td>Synergi</td>
<td>Tambar</td>
<td>308,0 kg</td>
<td>Man antar også at det er det lave trykket på sjøvann som fører til at utløseventilen på kanonen åpner. Denne ventilen er pilotstyrt og bruker sjøvannstrykket for å holde stengt.</td>
<td>Løftepumpen ble stoppet og startet igjen, sjøvannstrykket kom da opp igjen til normalt trykk. Hendelsen blir gransket internt. Ventiler som går til brannkanoner har blitt sjekket og de fungerer som de skal. HMS instruks 58 har blitt oppdatert med avlesing av sjøvannstrykk ved bemanning av Tambar samt at sjøvannspumpe skal være i drift så lenge det er personell om bord. I tillegg er det funnet en substitusjonskandidat med gul miljøklasse som skal erstatte det sorte brannskummet.</td>
</tr>
</tbody>
</table>

8.3 Akutte utslipp til luft

Det har vært ikke vært utilsiktede utslipp til luft av HC gass > 0,1 kg/s fra Ula eller Tambar i 2017. Det har imidlertid vært 2 utslipp av HFK-gasser i 2017 som vist i tabell 31 under.

Tabell 31 - EEH- Tabell 8.4 Oversikt over utilsiktede utslipp til luft

<table>
<thead>
<tr>
<th>Type gass</th>
<th>Antall hendelser</th>
<th>Mengder [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFC</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Sum</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
Detaljert informasjon om utslippene er vist i tabellen under.

<table>
<thead>
<tr>
<th>FIELD</th>
<th>SITE</th>
<th>SPEC</th>
<th>TYPE</th>
<th>ID</th>
<th>FYLLINGS-MENGDE KG</th>
<th>ÅRLIG ETTERFYLLING kg</th>
<th>KOMMENTAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ula</td>
<td>LQ</td>
<td>HFC</td>
<td>R-S07</td>
<td>Fryserom messe</td>
<td>30</td>
<td>3</td>
<td>Lekasje ved kompressor, utbedret</td>
</tr>
<tr>
<td>D</td>
<td>HFC</td>
<td>R-134a</td>
<td>AC krankabin</td>
<td>15</td>
<td>1,6</td>
<td>Lekasje ved væskeutskiller, væskeutskiller ble skiftet.</td>
<td></td>
</tr>
</tbody>
</table>
Avfall

Tabell 31 og Tabell 32 viser mengder farlig avfall og kildesortert vanlig avfall i 2017.

9.1 Farlig avfall

Tabell 312 – EEH-tabell 9.1 Farlig avfall

<table>
<thead>
<tr>
<th>Avfallstype</th>
<th>Beskrivelse</th>
<th>EAL-kode</th>
<th>Avfallstofnr.</th>
<th>Tatt til land [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annet</td>
<td>Litiumbatterier kun farlige</td>
<td>16 06 06</td>
<td>7094</td>
<td>0,04</td>
</tr>
<tr>
<td>Annet</td>
<td>Oljeforurenset masse</td>
<td>16 07 08</td>
<td>7022</td>
<td>0,94</td>
</tr>
<tr>
<td>Annet</td>
<td>Prosessvann, vaskevann</td>
<td>16 10 01</td>
<td>7165</td>
<td>4,90</td>
</tr>
<tr>
<td>Batterier</td>
<td>Blyakkumulatorer</td>
<td>16 06 01</td>
<td>7092</td>
<td>0,15</td>
</tr>
<tr>
<td>Batterier</td>
<td>Kadmiumholdige batterier</td>
<td>16 06 02</td>
<td>7084</td>
<td>0,03</td>
</tr>
<tr>
<td>Batterier</td>
<td>Småbatterier</td>
<td>20 01 33</td>
<td>7093</td>
<td>0,05</td>
</tr>
<tr>
<td>Blåsesand</td>
<td>Slagg, støv, flygeaske, katalysatorer, blåsesand mm</td>
<td>12 01 16</td>
<td>7096</td>
<td>78,17</td>
</tr>
<tr>
<td>Kjemikalier</td>
<td>Organisk avfall med halogen</td>
<td>16 05 08</td>
<td>7151</td>
<td>0,67</td>
</tr>
<tr>
<td>Kjemikalier</td>
<td>Organisk avfall uten halogen</td>
<td>16 05 08</td>
<td>7152</td>
<td>0,01</td>
</tr>
<tr>
<td>Lysstoffrør</td>
<td>Lysstoffrør</td>
<td>20 01 21</td>
<td>7086</td>
<td>0,56</td>
</tr>
<tr>
<td>Løsemidler</td>
<td>Organiske løsemidler uten halogen</td>
<td>16 05 08</td>
<td>7042</td>
<td>0,05</td>
</tr>
<tr>
<td>Maling, alle typer</td>
<td>Maling, lim, lakk som er farlig avfall</td>
<td>08 01 11</td>
<td>7051</td>
<td>2,53</td>
</tr>
<tr>
<td>Maling, alle typer</td>
<td>Maling, lim, lakk som er farlig avfall</td>
<td>08 01 17</td>
<td>7051</td>
<td>0,73</td>
</tr>
<tr>
<td>Maling, alle typer</td>
<td>Polymeriserende stoff, isocyanater</td>
<td>08 05 01</td>
<td>7121</td>
<td>0,00</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Olje- og fettavfall</td>
<td>12 01 12</td>
<td>7021</td>
<td>0,49</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Oljeemulsjoner, sloppvann</td>
<td>16 10 01</td>
<td>7030</td>
<td>2,10</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Oljefilter</td>
<td>15 02 02</td>
<td>7024</td>
<td>0,18</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Oljeforurenset masse</td>
<td>13 08 99</td>
<td>7022</td>
<td>1,53</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Oljeforurenset masse</td>
<td>15 02 02</td>
<td>7022</td>
<td>2,56</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Spillolje, ikke refusjonsberettiget</td>
<td>13 08 99</td>
<td>7012</td>
<td>0,29</td>
</tr>
<tr>
<td>Spraybokser</td>
<td>Spraybokser</td>
<td>16 05 04</td>
<td>7055</td>
<td>0,24</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td>96,20</td>
</tr>
<tr>
<td>Avfallstype</td>
<td>Beskrivelse</td>
<td>EAL-kode</td>
<td>Avfallstoffnr</td>
<td>Tatt til land [tonn]</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>----------</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Annet</td>
<td>Oljeforurenset masse</td>
<td>13 05 02</td>
<td>7022</td>
<td>0,70</td>
</tr>
<tr>
<td>Annet</td>
<td>Prosessvann, vaskevann</td>
<td>16 10 01</td>
<td>7165</td>
<td>1,20</td>
</tr>
<tr>
<td>Blåsesand</td>
<td>Slagg, støv, flygeaske, katalysatorer, blåsesand mm</td>
<td>12 01 16</td>
<td>7096</td>
<td>0,24</td>
</tr>
<tr>
<td>Borerelatert avfall</td>
<td>Kaks med oljebasert borevæske</td>
<td>16 50 72</td>
<td>7143</td>
<td>1805,60</td>
</tr>
<tr>
<td>Borerelatert avfall</td>
<td>Kaks med oljebasert borevæske</td>
<td>16 50 73</td>
<td>7143</td>
<td>18,50</td>
</tr>
<tr>
<td>Borerelatert avfall</td>
<td>Oljebasert borevæske</td>
<td>16 50 71</td>
<td>7142</td>
<td>3,90</td>
</tr>
<tr>
<td>Borerelatert avfall</td>
<td>Oljeholdige emulsjoner fra boredekk</td>
<td>13 08 02</td>
<td>7031</td>
<td>349,45</td>
</tr>
<tr>
<td>Borerelatert avfall</td>
<td>Vannbasert borevæske som inneholder farlige stoffer</td>
<td>16 50 73</td>
<td>7144</td>
<td>10,40</td>
</tr>
<tr>
<td>Kjemikalier</td>
<td>Organisk avfall uten halogen</td>
<td>15 01 10</td>
<td>7152</td>
<td>1,35</td>
</tr>
<tr>
<td>Lysstoffer</td>
<td>Lysstoffer</td>
<td>20 01 21</td>
<td>7086</td>
<td>0,18</td>
</tr>
<tr>
<td>Maling, alle typer</td>
<td>Maling, lim, lakk som er farlig avfall</td>
<td>08 01 11</td>
<td>7051</td>
<td>0,34</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Olje- og fettavfall</td>
<td>12 01 12</td>
<td>7021</td>
<td>0,69</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Oljefilter</td>
<td>15 02 02</td>
<td>7024</td>
<td>0,15</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Oljeforurenset masse</td>
<td>13 08 99</td>
<td>7022</td>
<td>0,36</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Oljeforurenset masse</td>
<td>15 02 02</td>
<td>7022</td>
<td>4,11</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Spilloje, ikke refusjonsberettig</td>
<td>13 08 99</td>
<td>7012</td>
<td>3,36</td>
</tr>
<tr>
<td>Spraybokser</td>
<td>Spraybokser</td>
<td>16 05 04</td>
<td>7055</td>
<td>0,04</td>
</tr>
<tr>
<td>Tankvask-avfall</td>
<td>Oljeholdige emulsjoner fra boredekk</td>
<td>16 07 08</td>
<td>7031</td>
<td>6,50</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td>2 207,07</td>
</tr>
</tbody>
</table>
Økning i 2013 skyldes avfall i form av oljebasert mud i forbindelse med brønnoverhaling/rekomplettering. I 2014 ble det generert 3,5 ganger mer farlig avfall enn året før. Årsaken til dette var typen boreaktivitet som var utført. Slurrifisert kaks og oljebasert borevæske utgjorde 95% av mengden farlig avfall i 2014.

9.2 Kildesortert vanlig avfall

Det er en generell økning kildesortert vanlig avfall i 2017 som har en direkte sammenheng med boreaktivitet på feltet.

Tabell 323 – EEH-tabell 9.2 Kildesortert vanlig avfall

<table>
<thead>
<tr>
<th>Type</th>
<th>Mengde [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matbefengt avfall</td>
<td>78,88</td>
</tr>
<tr>
<td>Våtorganisk avfall</td>
<td>2,56</td>
</tr>
<tr>
<td>Papir</td>
<td>6,26</td>
</tr>
<tr>
<td>Papp (brunt papir)</td>
<td>5,59</td>
</tr>
<tr>
<td>Treverk</td>
<td>14,39</td>
</tr>
<tr>
<td>Glass</td>
<td>0,68</td>
</tr>
<tr>
<td>Plast</td>
<td>0,65</td>
</tr>
<tr>
<td>EE-avfall</td>
<td>4,56</td>
</tr>
<tr>
<td>Restavfall</td>
<td>24,73</td>
</tr>
<tr>
<td>Metall</td>
<td>145,91</td>
</tr>
<tr>
<td>Blåsesand</td>
<td></td>
</tr>
<tr>
<td>Sprengstoff</td>
<td></td>
</tr>
<tr>
<td>Annet</td>
<td>2,87</td>
</tr>
<tr>
<td>Sum</td>
<td>287,09</td>
</tr>
</tbody>
</table>
Tambar

<table>
<thead>
<tr>
<th>Type</th>
<th>Mengde [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matbefengt avfall</td>
<td>8,88</td>
</tr>
<tr>
<td>Våtorganisk avfall</td>
<td>1,34</td>
</tr>
<tr>
<td>Papir</td>
<td>3,04</td>
</tr>
<tr>
<td>Papp (brunt papir)</td>
<td>2,58</td>
</tr>
<tr>
<td>Treverk</td>
<td>7,58</td>
</tr>
<tr>
<td>Glass</td>
<td>0,70</td>
</tr>
<tr>
<td>Plast</td>
<td>0,38</td>
</tr>
<tr>
<td>EE-avfall</td>
<td></td>
</tr>
<tr>
<td>Restavfall</td>
<td></td>
</tr>
<tr>
<td>Metall</td>
<td>17,71</td>
</tr>
<tr>
<td>Blåsesand</td>
<td></td>
</tr>
<tr>
<td>Sprengstoff</td>
<td></td>
</tr>
<tr>
<td>Annet</td>
<td>0,18</td>
</tr>
<tr>
<td>Sum</td>
<td>42,39</td>
</tr>
</tbody>
</table>
10.1 EEH tabeller Ula

Tabell 334 – EEH-tabell 10.1a Ula PP / Produsert Månedsoversikt av oljeinnhold

<table>
<thead>
<tr>
<th>Måned</th>
<th>Mengde vann [m³]</th>
<th>Mengde reinjisert vann [m³]</th>
<th>Mengde vann sluppet til sjø [m³]</th>
<th>Oljekonsentrasjon i utslipp til sjø [mg/l]</th>
<th>Oljemengde til sjø [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>238 476,03</td>
<td>0,14</td>
<td>237 414,18</td>
<td>10,10</td>
<td>2,40</td>
</tr>
<tr>
<td>Februar</td>
<td>198 387,84</td>
<td>0,16</td>
<td>197 578,63</td>
<td>11,69</td>
<td>2,31</td>
</tr>
<tr>
<td>Mars</td>
<td>235 527,43</td>
<td>0,02</td>
<td>234 534,83</td>
<td>27,10</td>
<td>6,36</td>
</tr>
<tr>
<td>April</td>
<td>264 237,72</td>
<td>4 482,88</td>
<td>258 660,34</td>
<td>18,09</td>
<td>4,68</td>
</tr>
<tr>
<td>Mai</td>
<td>276 924,73</td>
<td>0,10</td>
<td>276 073,83</td>
<td>12,72</td>
<td>3,51</td>
</tr>
<tr>
<td>Juni</td>
<td>299 376,49</td>
<td>-243,56</td>
<td>298 980,60</td>
<td>19,24</td>
<td>5,75</td>
</tr>
<tr>
<td>Juli</td>
<td>185 904,76</td>
<td>0,00</td>
<td>185 191,10</td>
<td>14,83</td>
<td>2,75</td>
</tr>
<tr>
<td>August</td>
<td>184 142,09</td>
<td>0,36</td>
<td>183 721,82</td>
<td>11,00</td>
<td>2,02</td>
</tr>
<tr>
<td>September</td>
<td>233 576,89</td>
<td>0,41</td>
<td>232 680,10</td>
<td>24,83</td>
<td>5,78</td>
</tr>
<tr>
<td>Oktober</td>
<td>204 529,87</td>
<td>0,03</td>
<td>203 823,50</td>
<td>17,31</td>
<td>3,53</td>
</tr>
<tr>
<td>November</td>
<td>182 707,43</td>
<td>0,13</td>
<td>181 542,04</td>
<td>21,13</td>
<td>3,84</td>
</tr>
<tr>
<td>Desember</td>
<td>189 618,90</td>
<td>27,00</td>
<td>188 457,32</td>
<td>25,72</td>
<td>4,85</td>
</tr>
<tr>
<td>Sum</td>
<td>2 693 410,19</td>
<td>4 267,68</td>
<td>2 678 658,27</td>
<td>17,83</td>
<td>47,76</td>
</tr>
</tbody>
</table>

Tabell 335 – EEH-tabell 10.1b Ula PP/Drenasje Månedoversikt av oljeinnhold

<table>
<thead>
<tr>
<th>Måned</th>
<th>Mengde vann [m³]</th>
<th>Mengde reinjisert vann [m³]</th>
<th>Mengde vann sluppet til sjø [m³]</th>
<th>Oljekonsentrasjon i utslipp til sjø [mg/l]</th>
<th>Oljemengde til sjø [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>11,34</td>
<td>0,04</td>
</tr>
<tr>
<td>Februar</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>14,66</td>
<td>0,05</td>
</tr>
<tr>
<td>Mars</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>13,25</td>
<td>0,04</td>
</tr>
<tr>
<td>April</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>1,34</td>
<td>0,00</td>
</tr>
<tr>
<td>Mai</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>0,75</td>
<td>0,00</td>
</tr>
<tr>
<td>Juni</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>0,79</td>
<td>0,00</td>
</tr>
<tr>
<td>Juli</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>1,59</td>
<td>0,01</td>
</tr>
<tr>
<td>August</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>7,43</td>
<td>0,02</td>
</tr>
<tr>
<td>September</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>24,68</td>
<td>0,08</td>
</tr>
<tr>
<td>Oktober</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>23,40</td>
<td>0,08</td>
</tr>
<tr>
<td>November</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>7,38</td>
<td>0,02</td>
</tr>
<tr>
<td>Desember</td>
<td>3 300,00</td>
<td>0,00</td>
<td>3 300,00</td>
<td>5,96</td>
<td>0,02</td>
</tr>
<tr>
<td>Sum</td>
<td>39 600,00</td>
<td>0,00</td>
<td>39 600,00</td>
<td>9,38</td>
<td>0,37</td>
</tr>
</tbody>
</table>
Tabell 356 – EEH-tabell 10.2.a UlaPP / A – Bore og brønnkjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 6157A</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>4,52</td>
<td>2,72</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>EC 6359A</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>105,27</td>
<td>40,69</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>SCALETREAT 8102</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>122,55</td>
<td>73,53</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Scaletreat 8125</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>12,56</td>
<td>7,53</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>244,90</td>
<td>124,48</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 367 – EEH-tabell 10.2.b Blane / B – Produksjonskjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NALCO® EC1545A</td>
<td>Nei</td>
<td>02 - Korrosjonshemmer</td>
<td>36,28</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>SCALETREAT DF 8229</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>10,29</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>MEG/Vann 80/20</td>
<td>Nei</td>
<td>07 - Hydrathemmer</td>
<td>56,66</td>
<td>0,00</td>
<td>0,00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Flexoil WM2200</td>
<td>Nei</td>
<td>13 - Voksinhibitor</td>
<td>41,75</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Emulsion® X-8036</td>
<td>Nei</td>
<td>15 - Emulsjonsbryter</td>
<td>14,40</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>159,38</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 378 – EEH-tabell 10.2.c OSELVAR / B – Produksjonskjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NALCO® EC1545A</td>
<td>Nei</td>
<td>02 - Korrosjonshemmer</td>
<td>9,35</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Monoetylenglykol (MEG) 80%</td>
<td>Nei</td>
<td>07 - Hydrathemmer</td>
<td>210,85</td>
<td>0,00</td>
<td>0,00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Flexoil WM2200</td>
<td>Nei</td>
<td>13 - Voksinhibitor</td>
<td>9,91</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>230,11</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CORRTREAT 7164B</td>
<td>Nei</td>
<td>02 - Korrosjonshemmer</td>
<td>147,07</td>
<td>115,40</td>
<td>0,15</td>
<td>Gul</td>
</tr>
<tr>
<td>NALCO® EC1545A</td>
<td>Nei</td>
<td>02 - Korrosjonshemmer</td>
<td>9,78</td>
<td>7,22</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>EC 6157A</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>211,03</td>
<td>172,10</td>
<td>0,27</td>
<td>Gul</td>
</tr>
<tr>
<td>NALCO® EC6771A</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>15,50</td>
<td>15,45</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Emulsotron® X-8036</td>
<td>Nei</td>
<td>15 - Emulsjonsbryter</td>
<td>11,51</td>
<td>0,98</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Saltsyre 7,5 %</td>
<td>Nei</td>
<td>38 - Avleiringsoppløser</td>
<td>8,72</td>
<td>8,67</td>
<td>0,01</td>
<td>Gul</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>403,60</td>
<td>319,82</td>
<td>0,43</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 4039 – EEH-tabell 10.2.e ULA PP / C - Injeksjonsvannkjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protectol(TM) GA 50</td>
<td>Nei</td>
<td>01 - Biosid</td>
<td>66,73</td>
<td>0,00</td>
<td>66,73</td>
<td>Gul</td>
</tr>
<tr>
<td>Sodium hypochlorite 13-15%</td>
<td>Nei</td>
<td>01 - Biosid</td>
<td>198,62</td>
<td>175,98</td>
<td>22,64</td>
<td>Rød</td>
</tr>
<tr>
<td>EC6348A</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>28,73</td>
<td>0,00</td>
<td>28,73</td>
<td>Gul</td>
</tr>
<tr>
<td>COS 9191</td>
<td>Nei</td>
<td>05 - Oksygenfjerner</td>
<td>54,06</td>
<td>0,00</td>
<td>54,06</td>
<td>Grønn</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>348,15</td>
<td>175,98</td>
<td>172,17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC6633A</td>
<td>Nei</td>
<td>02 - Korrosjonshemmer</td>
<td>0,26</td>
<td>0,26</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>EC 6351A</td>
<td>Nei</td>
<td>05 - Oksygenfjerner</td>
<td>0,16</td>
<td>0,16</td>
<td>0,00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>0,42</td>
<td>0,42</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 412 – EEH-tabell 10.2.g ULA PP / F - Hjelpemidler. Massebalanse for alle kjemikalier etter funksjonsgruppe.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KI-302C</td>
<td>Nei</td>
<td>02 - Korrosjonshemmer</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>MONOETYLENGYKOL</td>
<td>Nei</td>
<td>09 - Frostvæske</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Castrol Brayco Micronic SV/3</td>
<td>Nei</td>
<td>10 - Hydraulikkvæske (inkl. BOP-væske)</td>
<td>3,42</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>VK-Kaldavfetting</td>
<td>Nei</td>
<td>27 - Vaske-og rensemidler</td>
<td>1,92</td>
<td>1,92</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Arctic Foam 201 AF AFFF 1%</td>
<td>Nei</td>
<td>28 - Brannslukkekjemikalier(AFFF)</td>
<td>0,27</td>
<td>0,27</td>
<td>0,00</td>
<td>Svart</td>
</tr>
<tr>
<td>TEG/Vann 30/70</td>
<td>Nei</td>
<td>37 - Andre</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
</tbody>
</table>

Sum |
Forbruk: 5,62 [tonn] Utslipp: 2,20 [tonn] Injisert: 0,00 [tonn]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NALCO® EC1545A</td>
<td>Nei</td>
<td>02 - Korrosjonshemmer</td>
<td>33,19</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
</tbody>
</table>

Sum |
Forbruk: 33,19 [tonn] Utslipp: 0,00 [tonn] Injisert: 0,00 [tonn]

Tabell 434 – EEH-tabell 10.2.i ULA PP/H-Kjemikalier fra andre produksjonssteders. Massebalanse for alle kjemikalier etter funksjonsgruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NALCO® EC1545A</td>
<td>Nei</td>
<td>02 - Korrosjonshemmer</td>
<td>0,00</td>
<td>12,73</td>
<td>0,02</td>
<td>Gul</td>
</tr>
<tr>
<td>EC 6359A</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>0,00</td>
<td>5,97</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>SCALETREAT DF 8229</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>0,00</td>
<td>10,14</td>
<td>0,02</td>
<td>Gul</td>
</tr>
<tr>
<td>MEG/Vann 80/20</td>
<td>Nei</td>
<td>07 - Hydrathemmer</td>
<td>0,00</td>
<td>56,40</td>
<td>0,04</td>
<td>Grønn</td>
</tr>
<tr>
<td>Monoetylenglykol (MEG) 80%</td>
<td>Nei</td>
<td>07 - Hydrathemmer</td>
<td>0,00</td>
<td>209,86</td>
<td>0,17</td>
<td>Grønn</td>
</tr>
<tr>
<td>LP®200W Flow Improver</td>
<td>Nei</td>
<td>12 - Friksjonsreduserende kjemikalier</td>
<td>0,00</td>
<td>8,58</td>
<td>0,01</td>
<td>Grønn</td>
</tr>
<tr>
<td>Flexoil WM2200</td>
<td>Nei</td>
<td>13 - Voksinhibitor</td>
<td>0,00</td>
<td>21,84</td>
<td>0,03</td>
<td>Gul</td>
</tr>
<tr>
<td>Emulsotron® X-8036</td>
<td>Nei</td>
<td>15 - Emulsjonsbryter</td>
<td>0,00</td>
<td>1,22</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Claretech V500 Wireline Fluid</td>
<td>Nei</td>
<td>24 - Smøremidler</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
</tbody>
</table>

Sum |
Forbruk: 0,00 [tonn] Utslipp: 326,75 [tonn] Injisert: 0,31 [tonn]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IFE-WT-12</td>
<td>Nei</td>
<td>37 - Andre</td>
<td>0,07</td>
<td>0,07</td>
<td>0,00</td>
<td>Rød</td>
</tr>
</tbody>
</table>

Sum |
Forbruk: 0,07 [tonn] Utslipp: 0,07 [tonn] Injisert: 0,00 [tonn]
Tabell 456 - EEH tabell 10.3.a ULA PP / BTEX. Prøvetaking og analyse for de enkelte stoffene i produsert vann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Teknikk</th>
<th>Deteksjonsgrense [g/m³]</th>
<th>Konsentrasjon i prøve [g/m³]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzen</td>
<td>BTEX, organiske syrer i avløps-og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>0,0100</td>
<td>5,8473</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>15 662,98</td>
</tr>
<tr>
<td>Etylbenzen</td>
<td>BTEX, organiske syrer i avløps-og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>0,0200</td>
<td>0,2797</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>749,16</td>
</tr>
<tr>
<td>Toluene</td>
<td>BTEX, organiske syrer i avløps-og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>0,0200</td>
<td>4,0414</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>10 825,55</td>
</tr>
<tr>
<td>Xylen</td>
<td>BTEX, organiske syrer i avløps-og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>0,0200</td>
<td>4,5676</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>12 234,93</td>
</tr>
</tbody>
</table>

Tabell 47 - EEH tabell 10.3.b ULA PP / Fenoler. Prøvetaking og analyse for de enkelte stoffene i produsert vann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Teknikk</th>
<th>Deteksjonsgrense [g/m³]</th>
<th>Konsentrasjon i prøve [g/m³]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC&MS</td>
<td>M-038</td>
<td>2,0088</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>5 380,88</td>
<td></td>
</tr>
<tr>
<td>C2-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC&MS</td>
<td>M-038</td>
<td>0,9638</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>2 581,72</td>
<td></td>
</tr>
<tr>
<td>C3-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC&MS</td>
<td>M-038</td>
<td>0,4775</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>1 279,06</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------------</td>
<td>-------</td>
<td>--------</td>
<td>------------------</td>
<td>-----------------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>C4-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC&MS</td>
<td>M-038</td>
<td>0,0919</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>246,30</td>
<td></td>
</tr>
<tr>
<td>C5-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC&MS</td>
<td>M-038</td>
<td>0,0200</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>53,60</td>
<td></td>
</tr>
<tr>
<td>C6-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC&MS</td>
<td>M-038</td>
<td>0,0005</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>1,45</td>
<td></td>
</tr>
<tr>
<td>C7-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC&MS</td>
<td>M-038</td>
<td>0,0017</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>4,50</td>
<td></td>
</tr>
<tr>
<td>C8-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC&MS</td>
<td>M-038</td>
<td>0,0002</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,44</td>
<td></td>
</tr>
<tr>
<td>C9-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC&MS</td>
<td>M-038</td>
<td>0,0001</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>Fenol</td>
<td>Alkylfenoler i vann, GC&MS</td>
<td>M-038</td>
<td>0,0010</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>5 195,62</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 48 - EEH-tabell 10.3.c ULA PP / Olje i vann. Prøvetaking og analyse for de enkelte stoffene i produsert vann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Teknikk</th>
<th>Deteksjonsgrense [g/m³]</th>
<th>Konsentrasjon i prøve [g/m³]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olje i vann (Installasjon)</td>
<td>Olje i vann (C7-C-40)GC-FID</td>
<td>M-039 Mod NS_EN ISO 9377-2 / OSPAR 2005-15</td>
<td>0,4000</td>
<td>17,3733</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>46 537,03</td>
</tr>
</tbody>
</table>

Tabell 469 – EEH-tabell 10.3.d ULA PP / Organiske syrer. Prøvetaking og analyse for de enkelte stoffene i produsert vann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Teknikk</th>
<th>Deteksjonsgrense [g/m³]</th>
<th>Konsentrasjon i prøve [g/m³]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butansyre</td>
<td>BTEX, organiske syrer i avløps-og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>2,0000</td>
<td>0,5501</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>1 473,61</td>
</tr>
<tr>
<td>Eddiksyre</td>
<td>BTEX, organiske syrer i avløps-og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>2,0000</td>
<td>10,4324</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>27 944,72</td>
</tr>
<tr>
<td>Maursyre</td>
<td>Metansyre i vann, IC</td>
<td>K-160</td>
<td>2,0000</td>
<td>0,5501</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>1 473,61</td>
</tr>
<tr>
<td>Pentansyre</td>
<td>BTEX, organiske syrer i avløps-og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>2,0000</td>
<td>0,5501</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>1 473,61</td>
</tr>
<tr>
<td>Propionsyre</td>
<td>BTEX, organiske syrer i avløps-og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>2,0000</td>
<td>0,7506</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>2 010,71</td>
</tr>
<tr>
<td>Forbindelse</td>
<td>Metode</td>
<td>Teknikk</td>
<td>Deteksjonsgrense [g/m³]</td>
<td>Konsentrasjon i prøve [g/m³]</td>
<td>Analyse laboratorium</td>
<td>Dato for prøvetaking</td>
<td>Utslipp [kg]</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Acenaften</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M:036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0048</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>12,94</td>
</tr>
<tr>
<td>Acenaftylen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M:036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0009</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>2,53</td>
</tr>
<tr>
<td>Antrasen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M:036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0001</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,38</td>
</tr>
<tr>
<td>Benzo(a)antrasen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M:036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0002</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,54</td>
</tr>
<tr>
<td>Benzo(a)pyren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M:036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0001</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,20</td>
</tr>
<tr>
<td>Benzo(b)fluoranten</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M:036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0002</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,55</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M:036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0001</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,27</td>
</tr>
<tr>
<td>Benzo(k)fluoranten</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M:036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0003</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,88</td>
</tr>
<tr>
<td>C1-Fenantren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M:036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0749</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>200,73</td>
</tr>
<tr>
<td>Forbindelse</td>
<td>Metode</td>
<td>Teknikk</td>
<td>Deteksjonsgrense [g/m³]</td>
<td>Konsentrasjon i prøve [g/m³]</td>
<td>Analyse laboratorium</td>
<td>Dato for prøvetaking</td>
<td>Utslip [kg]</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C1-dibenzotiofen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0114</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>30,44</td>
</tr>
<tr>
<td>C1-naftalen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>1,0963</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>2 936,55</td>
</tr>
<tr>
<td>C2-Fenantren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0673</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>180,14</td>
</tr>
<tr>
<td>C2-dibenzotiofen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0127</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>33,89</td>
</tr>
<tr>
<td>C2-naftalen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,5600</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>1 499,92</td>
</tr>
<tr>
<td>C3-Fenantren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0099</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>26,56</td>
</tr>
<tr>
<td>C3-dibenzotiofen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0002</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,48</td>
</tr>
<tr>
<td>C3-naftalen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,3298</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>883,40</td>
</tr>
<tr>
<td>Dibenz[a,h]antrasen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0001</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,17</td>
</tr>
<tr>
<td>Forbindelse</td>
<td>Metode</td>
<td>Teknikk</td>
<td>Deteksjonsgrense [g/m³]</td>
<td>Konsentrasjon i prøve [g/m³]</td>
<td>Analyse laboratorium</td>
<td>Dato for prøvetaking</td>
<td>Utslipp [kg]</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>------------------------------</td>
<td>---------------------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Dibenzotiofen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0055</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>14,78</td>
</tr>
<tr>
<td>Fenantren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0629</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>168,54</td>
</tr>
<tr>
<td>Fluoranten</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0004</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>1,04</td>
</tr>
<tr>
<td>Fluoren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0363</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>97,29</td>
</tr>
<tr>
<td>Indeno(1,2,3-c,d)pyren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0003</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,88</td>
</tr>
<tr>
<td>Kryser</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0012</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>3,32</td>
</tr>
<tr>
<td>Naftalen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,7103</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>1902,63</td>
</tr>
<tr>
<td>Pyren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036 ISO 28540:2011</td>
<td>0,0000</td>
<td>0,0024</td>
<td>Intertek west Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>6,35</td>
</tr>
</tbody>
</table>
Tabell 51 – EEH-tabell 10.3.f ULA PP / Tungmetaller. Prøvetaking og analyse for de enkelte stoffene i produsert vann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Teknikk</th>
<th>Deteksjonsgrense [g/m3]</th>
<th>Konsentrasjon i prøve [g/m3]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsen</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008 Basert på EPA200.8</td>
<td>0,0010</td>
<td>0,0037</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>9,96</td>
</tr>
<tr>
<td>Barium</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008 Basert på EPA200.8</td>
<td>0,0100</td>
<td>20,4894</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>54 884,08</td>
</tr>
<tr>
<td>Bly</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008 Basert på EPA200.8</td>
<td>0,0003</td>
<td>0,0213</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>56,95</td>
</tr>
<tr>
<td>Jern</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008 Basert på EPA200.8</td>
<td>0,0200</td>
<td>24,1464</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>64 679,94</td>
</tr>
<tr>
<td>Kadmium</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008 Basert på EPA200.8</td>
<td>0,0002</td>
<td>0,0009</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>2,41</td>
</tr>
<tr>
<td>Kobber</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008 Basert på EPA200.8</td>
<td>0,0005</td>
<td>0,0027</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>7,17</td>
</tr>
<tr>
<td>Krom</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008 Basert på EPA200.8</td>
<td>0,0004</td>
<td>0,0006</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>1,72</td>
</tr>
<tr>
<td>Kvikksølv</td>
<td>Kvikksølv i sjøvann, ICP-MS</td>
<td>M-020, Mod NS_EN 1483</td>
<td>0,0000</td>
<td>0,0002</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>0,46</td>
</tr>
<tr>
<td>Nikkel</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008 Basert på EPA200.8</td>
<td>0,0015</td>
<td>0,0009</td>
<td>Intertek West Lab</td>
<td>2016-08-29, 2017-02-05, 2017-09-14</td>
<td>2,48</td>
</tr>
</tbody>
</table>
10.2 EEH tabeller Tambar

Tabell 472 – EEH-tabell 10.2.a Tambar /Drenasje. Månedsoversikt oljeinnhold.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oktober</td>
<td>241,00</td>
<td>0,00</td>
<td>241,00</td>
<td>0,64</td>
<td>0,00</td>
</tr>
<tr>
<td>November</td>
<td>451,00</td>
<td>0,00</td>
<td>451,00</td>
<td>4,40</td>
<td>0,00</td>
</tr>
<tr>
<td>Desember</td>
<td>335,00</td>
<td>0,00</td>
<td>335,00</td>
<td>0,67</td>
<td>0,00</td>
</tr>
<tr>
<td>Sum</td>
<td>1 027,00</td>
<td>0,00</td>
<td>1 027,00</td>
<td>2,15</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Tabell 483 – EEH-tabell 10.2.a TAMBAR / A – Bore-bore og brønnkjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MB-5111</td>
<td>Nei</td>
<td>01 - Biosid</td>
<td>0,38</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>EC 6157A</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>29,88</td>
<td>23,90</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>EC 6359A</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>28,16</td>
<td>16,89</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>NULLFOAM</td>
<td>Nei</td>
<td>04 - Skumdempør</td>
<td>0,12</td>
<td>0,04</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>CFC-123</td>
<td>Nei</td>
<td>05 - Oksygenfjerner</td>
<td>1,26</td>
<td>1,26</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Safe-Scav NA</td>
<td>Nei</td>
<td>05 - Oksygenfjerner</td>
<td>0,15</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>B18 - Antisedimentation Agent B18</td>
<td>Nei</td>
<td>08 - Gasstørivekemikalier</td>
<td>4,83</td>
<td>0,95</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>Nei</td>
<td>11 - pH-regulerende kjemikalier</td>
<td>0,25</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Lime</td>
<td>Nei</td>
<td>11 - pH-regulerende kjemikalier</td>
<td>22,48</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Soda Ash</td>
<td>Nei</td>
<td>11 - pH-regulerende kjemikalier</td>
<td>1,95</td>
<td>1,92</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>ECF-189a</td>
<td>Nei</td>
<td>12 - Friksjonsreducerende kjemikalier</td>
<td>0,64</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Barite (All Grades)</td>
<td>Nei</td>
<td>16 - Vekstoffer og organiske kjemikalier</td>
<td>1 036,60</td>
<td>254,04</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td>Nei</td>
<td>16 - Vekstoffer og organiske kjemikalier</td>
<td>112,81</td>
<td>109,12</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>D095 Cement Additive</td>
<td>Nei</td>
<td>17 - Kjemikalier for å hindre tapt sirkulasjon</td>
<td>0,48</td>
<td>0,01</td>
<td>0,00</td>
<td>Grønn</td>
</tr>
<tr>
<td>ECOTROL RD</td>
<td>Nei</td>
<td>17 - Kjemikalier for å hindre tapt sirkulasjon</td>
<td>0,56</td>
<td>0,00</td>
<td>0,00</td>
<td>Rød</td>
</tr>
<tr>
<td>G-Scarb</td>
<td>Nei</td>
<td>17 - Kjemikalier for å hindre tapt sirkulasjon</td>
<td>2,21</td>
<td>0,00</td>
<td>0,00</td>
<td>Rød</td>
</tr>
<tr>
<td>SAFE-CARB (All Grades)</td>
<td>Nei</td>
<td>17 - Kjemikalier for å hindre tapt sirkulasjon</td>
<td>2,85</td>
<td>0,00</td>
<td>0,00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Trol FL</td>
<td>Nei</td>
<td>17 - Kjemikalier for å hindre tapt sirkulasjon</td>
<td>7,52</td>
<td>7,33</td>
<td>0,00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Product Name</td>
<td>Nei</td>
<td>Use Case</td>
<td>Quantity</td>
<td>Cost</td>
<td>VAT</td>
<td>Total</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>--</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Versatrol M</td>
<td>Nei</td>
<td>17 - Kjemikalier for å hindre tapt sirkulasjon</td>
<td>9.59</td>
<td>0.00</td>
<td>0.00</td>
<td>9.59</td>
</tr>
<tr>
<td>B174 - Viscosifier for MUDPUSH II Spacer</td>
<td>Nei</td>
<td>18 - Viskositetsendrende kjemikalier(inkl. Lignosulfat,lignitt)</td>
<td>0.27</td>
<td>0.00</td>
<td>0.00</td>
<td>0.27</td>
</tr>
<tr>
<td>Bentonite 128</td>
<td>Nei</td>
<td>18 - Viskositetsendrende kjemikalier(inkl. Lignosulfat,lignitt)</td>
<td>1.76</td>
<td>0.00</td>
<td>0.00</td>
<td>1.76</td>
</tr>
<tr>
<td>Bentonite Ocma</td>
<td>Nei</td>
<td>18 - Viskositetsendrende kjemikalier(inkl. Lignosulfat,lignitt)</td>
<td>112.50</td>
<td>112.50</td>
<td>0.00</td>
<td>112.50</td>
</tr>
<tr>
<td>CMC POLYMER (All Grades)</td>
<td>Nei</td>
<td>18 - Viskositetsendrende kjemikalier(inkl. Lignosulfat,lignitt)</td>
<td>1.22</td>
<td>0.00</td>
<td>0.00</td>
<td>1.22</td>
</tr>
<tr>
<td>Duo-Tec N5</td>
<td>Nei</td>
<td>18 - Viskositetsendrende kjemikalier(inkl. Lignosulfat,lignitt)</td>
<td>4.52</td>
<td>3.90</td>
<td>0.00</td>
<td>8.42</td>
</tr>
<tr>
<td>LUBE OB</td>
<td>Nei</td>
<td>18 - Viskositetsendrende kjemikalier(inkl. Lignosulfat,lignitt)</td>
<td>1.26</td>
<td>0.00</td>
<td>0.00</td>
<td>1.26</td>
</tr>
<tr>
<td>RHEFLAT PLUS NS</td>
<td>Nei</td>
<td>18 - Viskositetsendrende kjemikalier(inkl. Lignosulfat,lignitt)</td>
<td>1.13</td>
<td>0.00</td>
<td>0.00</td>
<td>1.13</td>
</tr>
<tr>
<td>VERSAMOD</td>
<td>Nei</td>
<td>18 - Viskositetsendrende kjemikalier(inkl. Lignosulfat,lignitt)</td>
<td>1.17</td>
<td>0.00</td>
<td>0.00</td>
<td>1.17</td>
</tr>
<tr>
<td>VG Supreme</td>
<td>Nei</td>
<td>18 - Viskositetsendrende kjemikalier(inkl. Lignosulfat,lignitt)</td>
<td>10.18</td>
<td>0.00</td>
<td>0.00</td>
<td>10.18</td>
</tr>
<tr>
<td>B165 - Environmentally Friendly Dispersant</td>
<td>Nei</td>
<td>19 - Dispergeringsmidler</td>
<td>1.13</td>
<td>0.23</td>
<td>0.00</td>
<td>1.36</td>
</tr>
<tr>
<td>B213 Dispersant</td>
<td>Nei</td>
<td>19 - Dispergeringsmidler</td>
<td>1.92</td>
<td>0.02</td>
<td>0.00</td>
<td>1.94</td>
</tr>
<tr>
<td>Safe-Solv 148</td>
<td>Nei</td>
<td>19 - Dispergeringsmidler</td>
<td>8.00</td>
<td>0.00</td>
<td>0.00</td>
<td>8.00</td>
</tr>
<tr>
<td>Safe-Surf Y</td>
<td>Nei</td>
<td>20 - Tensider</td>
<td>4.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Calcium Chloride Brine</td>
<td>Nei</td>
<td>21 - Leirskiferstabilisator</td>
<td>90.78</td>
<td>0.00</td>
<td>0.00</td>
<td>90.78</td>
</tr>
<tr>
<td>Glydril MC</td>
<td>Nei</td>
<td>21 - Leirskiferstabilisator</td>
<td>56.14</td>
<td>54.75</td>
<td>0.00</td>
<td>110.89</td>
</tr>
<tr>
<td>Polypac R/UA/ELV</td>
<td>Nei</td>
<td>22 - Emulgeringsmiddel</td>
<td>7.52</td>
<td>7.33</td>
<td>0.00</td>
<td>14.85</td>
</tr>
<tr>
<td>ONE-MUL</td>
<td>Nei</td>
<td>22 - Emulgeringsmiddel</td>
<td>21.59</td>
<td>0.00</td>
<td>0.00</td>
<td>21.59</td>
</tr>
<tr>
<td>VERSAWET</td>
<td>Nei</td>
<td>22 - Emulgeringsmiddel</td>
<td>8.66</td>
<td>0.00</td>
<td>0.00</td>
<td>8.66</td>
</tr>
<tr>
<td>JET-LUBE® NCS-30ECF</td>
<td>Nei</td>
<td>23 - Gjengefett</td>
<td>0.60</td>
<td>0.06</td>
<td>0.00</td>
<td>0.66</td>
</tr>
<tr>
<td>A-419N</td>
<td>Nei</td>
<td>24 - Smøremidler</td>
<td>4.20</td>
<td>4.20</td>
<td>0.00</td>
<td>8.40</td>
</tr>
<tr>
<td>Claretex V500 Wireline Fluid</td>
<td>Nei</td>
<td>24 - Smøremidler</td>
<td>0.55</td>
<td>0.00</td>
<td>0.01</td>
<td>0.55</td>
</tr>
<tr>
<td>Ultralube II (e)</td>
<td>Nei</td>
<td>24 - Smøremidler</td>
<td>0.37</td>
<td>0.00</td>
<td>0.00</td>
<td>0.37</td>
</tr>
<tr>
<td>B151 - High-Temperature Retarder B151</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>0.82</td>
<td>0.31</td>
<td>0.00</td>
<td>1.13</td>
</tr>
<tr>
<td>B323 - Surfactant B323</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>1.38</td>
<td>0.00</td>
<td>0.00</td>
<td>1.38</td>
</tr>
<tr>
<td>B411 - Liquid Antifoam B411</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>0.35</td>
<td>0.01</td>
<td>0.00</td>
<td>0.35</td>
</tr>
<tr>
<td>D077 - Liquid Accelerator D077</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>3.24</td>
<td>0.04</td>
<td>0.00</td>
<td>3.28</td>
</tr>
<tr>
<td>D163 - Microfine Cement D163</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>0.47</td>
<td>0.47</td>
<td>0.00</td>
<td>0.94</td>
</tr>
<tr>
<td>D168 - UNIFLAC® L D168</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>2.34</td>
<td>0.36</td>
<td>0.00</td>
<td>2.70</td>
</tr>
<tr>
<td>D193 Fluid Loss Additive D193</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>2.92</td>
<td>0.04</td>
<td>0.00</td>
<td>2.96</td>
</tr>
<tr>
<td>D75 - Silicate Additive D75</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>7.32</td>
<td>1.21</td>
<td>0.00</td>
<td>8.54</td>
</tr>
<tr>
<td>D81 - Liquid Retarder D81</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>1.20</td>
<td>0.08</td>
<td>0.00</td>
<td>1.28</td>
</tr>
<tr>
<td>D956 - Class G - Silica Blend D956</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>466.03</td>
<td>61.11</td>
<td>0.00</td>
<td>527.14</td>
</tr>
<tr>
<td>U66 - Mutual Solvent U66</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>1.85</td>
<td>0.00</td>
<td>0.00</td>
<td>1.85</td>
</tr>
<tr>
<td>ECF-2083</td>
<td>Nei</td>
<td>26 - Kompletteringskjemikalier</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
</tr>
<tr>
<td>Sodium Chloride Brine</td>
<td>Nei</td>
<td>26 - Kompletteringskjemikalier</td>
<td>31.20</td>
<td>0.00</td>
<td>0.00</td>
<td>31.20</td>
</tr>
<tr>
<td>Escarcad 120 ULA</td>
<td>Nei</td>
<td>29 - Oljebasert basevæske</td>
<td>447.70</td>
<td>0.00</td>
<td>0.00</td>
<td>447.70</td>
</tr>
<tr>
<td>M003 - SODA ASH M3</td>
<td>Nei</td>
<td>37 - Andre</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sugar</td>
<td>Nei</td>
<td>37 - Andre</td>
<td>0.40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.40</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>2 572.71</td>
<td>664.21</td>
<td>0.01</td>
<td>3 236.92</td>
</tr>
</tbody>
</table>
Tabell 494 – EEH-tabell 10.2.b TAMBAR / B - Produksjonskjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC 6359A</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>23,48</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>23,48</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 505 – EEH-tabell 10.2.c TAMBAR / D - rørledningskjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LP™ 200W Flow Improver</td>
<td>Nei</td>
<td>12 - Frikjonsreduserende kjemikalier</td>
<td>57,55</td>
<td>0,00</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>57,55</td>
<td>0,00</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Castrol Hyspin Spindle Oil 10</td>
<td>Nei</td>
<td>10 - Hydraulikkvæske (inkl. BOP-væske)</td>
<td>4,58</td>
<td>0,00</td>
<td>0,00</td>
<td>Svart</td>
</tr>
<tr>
<td>JET-LUBE® JACKING GREASE(TM) ECF</td>
<td>Nei</td>
<td>23 - Gjengefett</td>
<td>0,59</td>
<td>0,06</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>JET-LUBE® NCS-30ECF</td>
<td>Nei</td>
<td>23 - Gjengefett</td>
<td>0,58</td>
<td>0,03</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Masava Max</td>
<td>Nei</td>
<td>27 - Vaske- og rensemidler</td>
<td>3,15</td>
<td>3,15</td>
<td>0,00</td>
<td>Gul</td>
</tr>
<tr>
<td>Arctic Foam 201 AF AFFF 1%</td>
<td>Nei</td>
<td>28 - Brannslukkekjemikalier(AFFF)</td>
<td>0,04</td>
<td>0,04</td>
<td>0,00</td>
<td>Svart</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>8,93</td>
<td>3,28</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>
Tabeller

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabell 1</td>
<td>Eierandel on Ulafeltet og Tambar</td>
</tr>
<tr>
<td>Tabell 2</td>
<td>Oversikt over utvinnbare og gjenværende reservert (kilde: www.npd.no)</td>
</tr>
<tr>
<td>Tabell 3</td>
<td>EEH-tabell 1.2 Status forbruk</td>
</tr>
<tr>
<td>Tabell 4</td>
<td>EEH-tabell 1.3 Status produksjon</td>
</tr>
<tr>
<td>Tabell 5</td>
<td>Utslippstillatelse gjeldende på Ula og Tambar</td>
</tr>
<tr>
<td>Tabell 6</td>
<td>Kjemikalier som er prioritert for substitution</td>
</tr>
<tr>
<td>Tabell 7</td>
<td>Status for nullutslipparbeidet</td>
</tr>
<tr>
<td>Tabell 8</td>
<td>Brønnstatus 2017</td>
</tr>
<tr>
<td>Tabell 9</td>
<td>EEH-tabell 2.1 Bruk og utslipp av vannbasert borevæske</td>
</tr>
<tr>
<td>Tabell 10</td>
<td>EEH-tabell 2.2 Disponering av kaks ved boring med vannbasert borevæske</td>
</tr>
<tr>
<td>Tabell 11</td>
<td>EEH-tabell 2.3 Boring med oljebasert</td>
</tr>
<tr>
<td>Tabell 12</td>
<td>EEH-tabell 2.4 Disponering av kaks ved boring med oljebasert borevæske</td>
</tr>
<tr>
<td>Tabell 13</td>
<td>Korrelasjonsfaktor</td>
</tr>
<tr>
<td>Tabell 14</td>
<td>EEH-tabell 3.1 Utslipp av oljeholdig vann fra Ula feltet</td>
</tr>
<tr>
<td>Tabell 15</td>
<td>EEH-tabell 3.2 Utslipp av tungemetaller med produsertvann</td>
</tr>
<tr>
<td>Tabell 16</td>
<td>EEH-tabell 3.3a Utslipp av BTEX-forbindelser i produsertvann</td>
</tr>
<tr>
<td>Tabell 17</td>
<td>EEH-tabell 3.3b Utslipp av PAH-forbindelser i produsertvann</td>
</tr>
<tr>
<td>Tabell 18</td>
<td>EEH-tabell 3.3c Utslipp av fenoler i produsertvann</td>
</tr>
<tr>
<td>Tabell 19</td>
<td>EEH-tabell 3.3d Utslipp av organiske syrer i produsertvann</td>
</tr>
<tr>
<td>Tabell 20</td>
<td>EEH-tabell 4.1 Samlet forbruk og utslipp av kjemikalier for Ula og Tambar, inklusive utslipp/reinjeksjon fra Blane og Oselvar</td>
</tr>
<tr>
<td>Tabell 21</td>
<td>EEH-tabell 5.1 Samlet forbruk og utslipp av kjemikalier for Ula og Tambar</td>
</tr>
<tr>
<td>Tabell 22</td>
<td>EEH-tabell 6.2 Stoff som står på Prioritetslisten som tilsetning i produkter (kg)</td>
</tr>
<tr>
<td>Tabell 23</td>
<td>EEH-tabell 6.3 Stoff som står på Prioritetslisten som forurensinger i produksjon (kg)</td>
</tr>
<tr>
<td>Tabell 24</td>
<td>EEH-tabell 7.1 Utslipp til luft fra forbranningsprosesser på permanent plasserte inntak</td>
</tr>
<tr>
<td>Tabell 25</td>
<td>EEH-tabell 7.5 Diffuse utslipp og kaldventilering</td>
</tr>
<tr>
<td>Tabell 26</td>
<td>EEH-tabell 7.4 Forbruk og utslipp av gassstoffer</td>
</tr>
<tr>
<td>Tabell 27</td>
<td>EEH-tabell 8.1 Oversikt over utslippted utslipp av olje i løpet av rapporteringsåret</td>
</tr>
<tr>
<td>Tabell 28</td>
<td>EEH-tabell 8.2 Oversikt over akutt forurensning av kjemikalier og borevæske i løpet av rapporteringsåret</td>
</tr>
<tr>
<td>Tabell 29</td>
<td>EEH-tabell 8.3 Utiliserte utslipp av stoff fordelt etter deres miljøegenskaper</td>
</tr>
<tr>
<td>Tabell 30</td>
<td>Beskrivelse av årsak og korrigrende tiltak ved akutt utslipp til sjø</td>
</tr>
<tr>
<td>Tabell 31</td>
<td>EEH-tabell 8.4 Utiliserte utslipp til luft</td>
</tr>
<tr>
<td>Tabell 32</td>
<td>EEH-tabell 9.1 Farlig avfall</td>
</tr>
<tr>
<td>Tabell 33</td>
<td>EEH-tabell 9.2 Kildesortert vanlig avfall</td>
</tr>
<tr>
<td>Tabell 34</td>
<td>EEH-tabell 10.1a Ula PP / Produsert Månedsoversikt av oljeinnhold</td>
</tr>
<tr>
<td>Tabell 35</td>
<td>EEH-tabell 10.1b Ula PP/Drenasje Månedsoversikt av oljeinnhold</td>
</tr>
<tr>
<td>Tabell 36</td>
<td>EEH-tabell 10.2a UlaPP / A - Bore og brønnkjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 37</td>
<td>EEH-tabell 10.2b Blane / B - Produksjonkjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 38</td>
<td>EEH-tabell 10.2c OSELVAR / B - Produksjonkjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 40</td>
<td>EEH-tabell 10.2e ULA PP / C - Injeksionsvannkjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 41</td>
<td>EEH-tabell 10.2f ULA PP / D - Råledningskjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 42</td>
<td>EEH-tabell 10.2g ULA PP / F - Hjelpemidler. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 43</td>
<td>EEH-tabell 10.2h ULA PP / G - Kjemikalier som tilsettes eksportstrømmen. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 44</td>
<td>EEH-tabell 10.2i ULA PP/H-Kjemikalier fra andre produksjonssteder. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 45</td>
<td>EEH-tabell 10.2j ULA DP/K - Reservoarstyring. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 46</td>
<td>EEH-tabell 10.3a ULA PP / BTEx. Prøvetaking og analyse for de enkelte stoffene i produsert vann</td>
</tr>
<tr>
<td>Tabell 47</td>
<td>EEH-tabell 10.3d ULA PP / Organiske syrer. Prøvetaking og analyse for de enkelte stoffene i produsert vann</td>
</tr>
<tr>
<td>Tabell 52</td>
<td>EEH-tabell 10.2a Tambar / Drenasje. Månedsoversikt oljeinnhold</td>
</tr>
<tr>
<td>Tabell 53</td>
<td>EEH-tabell 10.2a TAMBAR / A - Bore-bore og brønnkjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 54</td>
<td>EEH-tabell 10.2b TAMBAR / B - Produksjonkjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 55</td>
<td>EEH-tabell 10.2c TAMBAR / D - Rørføringkjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
<tr>
<td>Tabell 56</td>
<td>EEH-tabell 10.2d TAMBAR / F - Hjelpemidler. Massebalanse for alle kjemikalier etter funksjonsgruppe</td>
</tr>
</tbody>
</table>
Figur 1 – Oljeproduksjon på Ula og Tambar (Prognose fra RNB2018) ... 5
Figur 2 - Gassproduksjon på Tambar (Prognose fra RNB 2018) ... 5
Figur 3 - Historiske utslipp samt prognoser for CO$_2$ og NOX (data fra RNB2018) ... 8
Figur 4 - Historiske data for utslipp av produsert vann, samt prognoser for utslipp (data fra RNB2018) 8
Figur 5 – Utslipp av olje og oljeholdig vann .. 20
Figur 6 – Historisk utvikling i utslipp av komponenter i produsertvann. .. 25
Figur 7- Samlet forbruk og utslipp av kjemikalier, Ula øverst og Tambar nederst ... 28
Figur 8 - Samlet forbruk og utslipp av bore- og brønnkjemikalier for Ula .. 28
Figur 9 - Samlet forbruk og utslipp av produsjonskjemikalier for Ula øverst og Tambar nederst. 29
Figur 10 - Samlet forbruk og utslipp av injeksjonskjemikalier Ula ... 30
Figur 11 - Samlet forbruk og utslipp av rørledningsskjemikalier Tambar .. 31
Figur 12 - Forbruk og utslipp av hjelpekjemikalier på Ula .. 32
Figur 13 - Samlet forbruk av kjemikalier som tilsettes eksportstrømmen, Ula .. 32
Figur 14 - Samlet forbruk og utslipp av kjemikalier fra andre produksjonssteder .. 33
Figur 15 – Fordeling på utfasingsgrupper for Ula og Tambar .. 34
Figur 16 - Historisk utvikling av utslipp av grønn, gul, rød og svart kategori for Ula ... 36
Figur 17 - Utslipp til luft .. 41
Figur 18 - Antall utilsiktede oljeutslipp på Ula og Tambar .. 42
Figur 19 - Antall utilsiktede kjemikalieutslipp på Ula og Tambar ... 44
Figur 20 - Historisk utvikling mht farlig avfall .. 49