Utslippsrapport for Skarvfeltet

2017

Versjonsnummer: 1
Utgivelsesdato: 15. mars 2018

Utarbeidet av:

Øivind Hille
Miljørådgiver
Aker BP

Godkjent av:

Svein Liknes A
VP Operations – Skarv Asset
Aker BP
Innholdsfortegnelse

1 Innledning ... 3
 1.1 Feltets status .. 4
 1.2 Gjeldende utslippstillatelser og avvik .. 6
 1.3 Kjemikalier som er prioritert for utfasing ... 6
 1.4 Status for nullutslipparbeid .. 8
 1.5 Miljøprosjekter / forskning og utvikling ... 9
 1.5.1 Energiytering .. 9
 1.6 Aktive brønner ... 9

2 Utslipp fra boring ... 10
 2.1 Boring med vannbasert borevæske .. 10
 2.2 Boring med oljebasert borevæske .. 10

3 Utslipp av oljeholdig vann .. 11
 3.1 Olje-/vannstrømmer og renseanlegg .. 11
 3.1.1 Utslippstrømmer og vannbehandling ... 11
 3.1.2 Analyse og prøvetaking av vann til utslipp ... 12
 3.1.3 Omregningsfaktor .. 12
 3.1.4 Usikkerhet i vanndata ... 12
 3.2 Utslipp av produsert vann og olje .. 14
 3.3 Utslipp av forbindelser i produsertvann ... 14
 3.3.1 Mengde løste komponenter i produsertvann .. 14

4 Bruk og utslipp av kjemikalier .. 18
 4.1 Samlet forbruk og utslipp ... 18
 4.2 Bore og brønkJemikalier (Bruksområde A) .. 19
 4.3 Produksjonskjemikalier (Bruksområde B) .. 19
 4.4 Rørledningskjemikalier (Bruksområde D) .. 19
 4.5 Gassbehandlingskjemikalier (Bruksområde E) ... 19
 4.6 Hjelpekjemikalier (Bruksområde F) .. 19
 4.6.1 Lukket system .. 20

5 Evaluering av kjemikalier .. 21
 5.1 Oppsummering av kjemikalier .. 21

6 Bruk og utslipp av miljøfarlig forbindelser .. 24
 6.1 Miljøfarlige forbindelser som tilsetninger i produkter ... 24
 6.2 Miljøfarlige forbindelser som forurensing i produkter ... 24

7 Utslipp til luft .. 25
 7.1 Forbrenningsprosesser ... 25
 7.2 Utslipp ved lagring og lasting av olje ... 28
 7.3 Diffuse utslipp og kaldventilering .. 29
 7.4 Bruk og utslipp av gassporstoffer .. 29

8 Utilisiktede utslipp .. 30

9 Avfall .. 33
 9.1 Farlig avfall ... 33
 9.2 Kildesortert avfall .. 34

10 Vedlegg .. 36
 10.1 Tabeller ... 36

Utslippsrapport Skarv 2017
1 Innledning

Denne utslippsrapporten omfatter utslipp til luft og sjø, samt avfallshåndtering fra Skarvfeltet for 2017. Rapporterte data legges inn i rapporteringsverktøyet Environmental Hub (EEH) og kontrolleres i henhold til NOROGs retningslinjer og Miljødirektoratets retningslinjer for rapportering fra petroleumsvirksomhet til havs.

Skarvfeltet ligger sørvest for Norne (35 km), nord for Heidrun (45 km) og 210 km vest for Sandnessjøen. Skarv FPSO er et flytende produksjonskip og har 4 produksjonssenter med feltinterne rørledninger. Skarvfeltet kom i produksjon i desember 2012 og har en forventet levetid på 25 år.

Kontaktperson hos Aker BP ASA er:

Øivind Hille
e-post: oivind.hille@akerbp.com
1.1 Feltets status

Ved oppstart av produksjon i 2012 var Skarv underlagt Sjøfartsdirektoratets myndighet. I 2016 ble flagget fjernet, og Skarv er ikke lenger underlagt Sjøfartsdirektoratet. Dette betyr at Sjøfartsdirektoratets krav om online måling og egne grenser for konsentrasjon av oljeinnhold i drenasjevann har bortfalt.

I løpet av høsten 2016 gikk Skarv over til lavtrykksproduksjon. Dette gjøres når trykket i brønnene har falt så mye at en ikke kan produsere rett inn på 1. trinn separator, men inn på neste trinn som har lavere innløpstrykk. Formålet med endringen er å opprettholde høy gassproduksjon.

Lavtrykksproduksjon øker kraftbehovet og utslipp til luft vil påvirkes av denne endringen. Dette har fått full effekt i 2017 og kraftforbruk er betydelig høyere enn i 2016 og 2015.

Tabell 1 - Eierandeler på Skarvfeltet

<table>
<thead>
<tr>
<th>Operatør/partner Skarv</th>
<th>Eierandel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aker BP AS (operatør)</td>
<td>23,84 %</td>
</tr>
<tr>
<td>Statoil Petroleum AS</td>
<td>36,17 %</td>
</tr>
<tr>
<td>DEA Norge AS</td>
<td>28,08 %</td>
</tr>
<tr>
<td>PGNiG Upstream International AS</td>
<td>11,92 %</td>
</tr>
</tbody>
</table>

Tabell 2 - Oversikt over utvinnbare og gjenværende reserver (kilde: www.norskpetroleum.no)

<table>
<thead>
<tr>
<th>Opprinnelig utvinnbare reserver Skarv</th>
<th>Gjenværende reserver Skarv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olje [mill Sm3]</td>
<td>Gass [mrd Sm3]</td>
</tr>
<tr>
<td>NGL [mill tonn]</td>
<td>Kondensat [mill Sm3]</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>24.4</td>
<td>70.3</td>
</tr>
<tr>
<td>15.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11.9</td>
<td>51.6</td>
</tr>
<tr>
<td>11.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Tabell 3 -EEH Tabell 1.2 Status forbruk

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>192 853 476</td>
<td>237 574</td>
<td>16 399 695</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Februar</td>
<td>162 945 143</td>
<td>1 012 411</td>
<td>14 252 965</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>185 322 944</td>
<td>3 671</td>
<td>15 002 705</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>186 926 758</td>
<td>64 234</td>
<td>15 283 552</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mai</td>
<td>140 008 483</td>
<td>262</td>
<td>15 029 393</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Juni</td>
<td>130 148 782</td>
<td>551 603</td>
<td>13 997 526</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Juli</td>
<td>121 422 082</td>
<td>75 444</td>
<td>14 470 454</td>
<td>52 000</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>102 340 594</td>
<td>100 085</td>
<td>14 170 310</td>
<td>8 000</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>81 710 687</td>
<td>598 252</td>
<td>11 844 670</td>
<td>224 000</td>
<td></td>
</tr>
<tr>
<td>Oktober</td>
<td>120 746 746</td>
<td>15 950</td>
<td>14 411 811</td>
<td>1 754 000</td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>105 989 761</td>
<td>213 971</td>
<td>13 634 552</td>
<td>1 496 000</td>
<td></td>
</tr>
<tr>
<td>Desember</td>
<td>129 290 994</td>
<td>2 330</td>
<td>14 776 251</td>
<td>794 000</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>1 659 706 450</td>
<td>2 875 787</td>
<td>173 273 884</td>
<td>4 328 000</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 4 - EEH Tabell 1.3 Status produksjon

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>189 022</td>
<td>189 022</td>
<td></td>
<td></td>
<td>642 926 004</td>
<td>401 019 929</td>
<td>11 307</td>
</tr>
<tr>
<td>Februar</td>
<td>163 777</td>
<td>163 777</td>
<td></td>
<td></td>
<td>556 940 603</td>
<td>349 809 864</td>
<td>9 616</td>
</tr>
<tr>
<td>Mars</td>
<td>173 671</td>
<td>173 671</td>
<td></td>
<td></td>
<td>598 935 175</td>
<td>367 729 556</td>
<td>9 858</td>
</tr>
<tr>
<td>April</td>
<td>171 367</td>
<td>171 367</td>
<td></td>
<td></td>
<td>597 315 603</td>
<td>365 654 284</td>
<td>10 233</td>
</tr>
<tr>
<td>Mai</td>
<td>149 829</td>
<td>149 829</td>
<td></td>
<td></td>
<td>569 414 999</td>
<td>384 865 742</td>
<td>10 924</td>
</tr>
<tr>
<td>Juni</td>
<td>136 645</td>
<td>136 645</td>
<td></td>
<td></td>
<td>531 030 648</td>
<td>357 442 343</td>
<td>8 736</td>
</tr>
<tr>
<td>Juli</td>
<td>133 892</td>
<td>133 892</td>
<td></td>
<td></td>
<td>549 732 965</td>
<td>385 084 476</td>
<td>10 431</td>
</tr>
<tr>
<td>August</td>
<td>107 259</td>
<td>107 259</td>
<td></td>
<td></td>
<td>492 897 798</td>
<td>349 559 679</td>
<td>9 869</td>
</tr>
<tr>
<td>September</td>
<td>80 350</td>
<td>80 350</td>
<td></td>
<td></td>
<td>353 942 424</td>
<td>241 290 066</td>
<td>7 598</td>
</tr>
<tr>
<td>Oktober</td>
<td>95 040</td>
<td>95 040</td>
<td></td>
<td></td>
<td>422 748 573</td>
<td>265 307 350</td>
<td>9 419</td>
</tr>
<tr>
<td>November</td>
<td>85 228</td>
<td>85 228</td>
<td></td>
<td></td>
<td>388 054 946</td>
<td>249 377 444</td>
<td>7 728</td>
</tr>
<tr>
<td>Desember</td>
<td>117 308</td>
<td>117 308</td>
<td></td>
<td></td>
<td>496 805 956</td>
<td>328 215 100</td>
<td>9 866</td>
</tr>
<tr>
<td>Sum</td>
<td>1 603 388</td>
<td>1 603 388</td>
<td></td>
<td></td>
<td>6 200 745 694</td>
<td>4 045 355 833</td>
<td>115 585</td>
</tr>
</tbody>
</table>

Merk at dataene i Tabell 3 og Tabell 4 er gitt i EEH av OD. I resten av rapporten er egne tall benyttet.
1.2 Gjeldende utslippstillatelser og avvik

Utslipp fra operasjonene som er beskrevet i denne rapporten er regulert i tillatelser fra Miljødirektoratet som listet nedenfor.

Tabell 5 - Gjeldende tillatelser for Skarvfeltet

<table>
<thead>
<tr>
<th>Miljødirektoratets referanse</th>
<th>Opprinnelig dato</th>
<th>Sist oppdatert dato</th>
<th>Overskrift</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009/67-22 448.1</td>
<td>06.10.2009</td>
<td></td>
<td>Boring av produksjonsbrønner på Skarv</td>
</tr>
<tr>
<td>2013/714</td>
<td>23.09.2015</td>
<td>25.10.2017</td>
<td>Tillatelse til kvotepliktige utslipp av klimagasser på Skarv</td>
</tr>
</tbody>
</table>

Utilsiktede utslipp er inkludert i kapittel 8.

Utslippssramme for NO\textsubscript{x} er overskredet med 40 tonn. Rammen er 361.8 tonn mens utslippet fra Skarv og borerigg var 401.5 tonn i 2017. Grunnen til dette er at riggen hadde høyere dieselforbruk enn forventet på grunn av bruk av dynamisk posisjoner.

1.3 Kjemikalier som er prioritert for utfasing

Nedenfor gis det en status på substitusjon av kjemikalier som er brukt i 2017 samt en oversikt på hvilke kjemikalier som er faset ut i løpet av året. Tillatelsen inneholder flere produkter innenfor produksjon som kan komme til anvendelse ved behov, og vil da inngå i substitusjonsoversikten.

I 2017 ble Castrol Transqua HT-2 (rød) byttet ut med Castrol Transqua HT-2-N (gul Y1), og metanol er byttet ut med MEG.

Brannskum at typen AFFF (Arctic Foam 201 1\% og Arctic Foam 203 3\%) i svart kategori skal skiftes ut med brannskum i gul kategori. Det nye brannskummet er Re-Healing Foam RF-1-AG (Gul Y1). Selv utskiftningsjobben er planlagt gjennomført i 2018.
<table>
<thead>
<tr>
<th>Kjemikalier for substitusjon (Handelsnavn)</th>
<th>Miljøklasse</th>
<th>Kommentar</th>
<th>Nytt kjemikalie (Handelsnavn)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castrol Alpha SP 100</td>
<td>svart</td>
<td>Castrol Alpha SP100 inneholder 2,1% svart komponenter og brukes i lukket system. Produktet erstattet Castrol Biostat SP150 i 2014.</td>
<td>Ingen alternativer identifisert</td>
<td>Ikke bestemt</td>
</tr>
<tr>
<td>Castrol Biostat 150</td>
<td>svart</td>
<td>Smørølje som brukes som tetningsolje på thrustere. Produktet er nødvendig for å opprettholde drift på Skarv FPSO. Biostat 150 er valgt fordi det er det miljømessig beste alternativet. Det er innført tiltak for å redusere utslipp av produktet.</td>
<td>Ingen alternativer identifisert</td>
<td>Ikke fastsatt</td>
</tr>
<tr>
<td>"AFFF": - Arctic Foam 201 1% og Arctic Foam 203 3%</td>
<td>svart</td>
<td>AFFF er et beredskapskjemikalie og forbruk er derfor ikke regulert i rammeavtalen. Produktene har svart miljøklassifisering. Aker BP måtte i 2016 avvende en avklaring på korrosjonsrisiko for et rødt alternativ til AFFF. Leverandøren har senere utviklet et gult produkt som er testet ut i 2017 med gode resultater.</td>
<td>Skiftes ut med gult alternativ - Re-Healing Foam RF1-AG</td>
<td>Skiftes ut i 2018</td>
</tr>
<tr>
<td>SCAL-TREAT DF8093D</td>
<td>Gul</td>
<td>Scale inhibitor tilsettes for å hindre CaCO₃ avleiringer. Trusselen har blitt endret og dette produktet vil bli byttet til et som også inhiberer mot BaSO₄ scale.</td>
<td>SCAL12504A (Gul Y2)</td>
<td>Skiftes i 2018</td>
</tr>
<tr>
<td>EC6202A /Protectol GA50</td>
<td>Gul</td>
<td>EC6202A ble byttet med Protectol GA50 i august 2017, disse er miljømessige like.</td>
<td>Alternativ ikke identifisert</td>
<td>Ikke fastsatt</td>
</tr>
</tbody>
</table>
Status for nullutslippsarbeidet

Tabell 7 - Status for nullutslippsarbeidet

<table>
<thead>
<tr>
<th>Tiltaksbeskrivelse</th>
<th>Status</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miljøstyringssystem iht ISO14001</td>
<td>Grønn</td>
<td>Miljøstyringssystemet er lagt opp iht prinsippene i miljø standarden ISO14001</td>
</tr>
<tr>
<td>Oppsamling av produsert oljeholdig sand</td>
<td>Grønn</td>
<td>Evt. produksjon av sand vil kunne bli felt ut i separatorene. Dersom dette skulle skje vil det bli fraktet til land for behandling.</td>
</tr>
<tr>
<td>Utfasing av potensielt miljøskadelige kjemikalier</td>
<td>Grønn</td>
<td>Utfasingsarbeidet er oppsummert ovenfor.</td>
</tr>
<tr>
<td>Lukket fakkel</td>
<td>Grønn</td>
<td>Fakken på Skarv ble lukket i mai 2013.</td>
</tr>
<tr>
<td>Fakling og kaldventilering</td>
<td>Gul</td>
<td>Nye kvantifiseringsmetoder for kaldventilering og diffuse utslipp er benyttet for 2017. Fakling er ytterligere redusert gjennom målrettet arbeid innen driftsoptimalisering spesielt ved oppstart og nedstengning av prosessanlegget.</td>
</tr>
<tr>
<td>EIF > 10</td>
<td>Grønn</td>
<td>Tiltak innen biosidbruk i 2015 har gitt positivt utslag på resultater på EIF. Ved ny kjøring i 2015 var denne redusert til 29,2 som «time averaged EIF» iht OSPAR 2015.</td>
</tr>
</tbody>
</table>

Skarv har tidsintegrert EIF > 10 med bruk av nye OSPAR PNEC-verdier for naturlig forekommende stoffer, uten vekting og skulle således gjennomføre en teknologivurdering av produsert vann anlegget. EIF er 29, og det er tilsatte kjemikalier som bidrar med 94 % av EIF. I 2016 ble det laget en egen rapport om teknologivurdering for Skarvfeltet.

Komponenter i produsert vann systemet som sikrer BAT.

1. Hovedseparasjon.
 a) Installasjon av subsea choker og topside choker muliggjør drift med åpne topside choker som vil bidra til strømning med minimal skjæring av oljedråper forut for innløp til separatorene.
 b) Produsert vann er separert i 2nd Stage Separator og Test Separator med oppholdstider t>5 min for design strømning Q=66.7 m³/h i hver av separatorene. Sand jetting system er inkludert for rengjøring i tilfelle for sand akkumulering. Inlet separator er designet med mulighet for å installere overløpsplate og vannuttak, men i startfasen er dette ikke montert.
 c) Hydrosykloner. AP20 linere fra Alderley er inkludert i 2 x 100% hydrosykloner tilknyttet 2nd Stage Separator med tilsvarende 1 x 100% Hydrosyklon tilknyttet Test Separator. Cut-off for oljedråper gjennom linere er forventet å være 10 microns.
 d) Fast installert kjemikalie system og injeksjonspunkter for både scaleinhibitor og deoiler.

2. Sekundær Separasjon - Avgassing og skimming med bruk av CFU (Compact Flotation Unit).
 a) 1 x 100% CFU installert med arrangement som sikrer gass boble distribusjon sammen med innløpsarrangement formet som vorteksgenerator.
 b) CFU er plassert på høy elevasjon (Upper Process Deck) for å kunne drifte anlegget med lavest mulige driftstrykk (P=1 barg) og derav avgasen mest mulig før dette sendes til produsert vann Caisson.
 c) Brenngass tilkoblet for å sikre flotasjoneffekt.
 d) Mulighet for tilkobling av «deoiler» like oppstrøms CFU som gass boble generator sammen med vortex innløp.
 e) Mulighet for skimming gjennom «reject» linje tilbake til Closed Drain

3. Sekundær separasjon – Produsert vann fylte
 a) 2 x 100 % Produsert vann fylte inkluderer en filter masse “PS85” som er en granulær oljet absorbjonsmedium for fjerning av alle hydrokarboner fra produsert vannet. “PS85 media” er et patentert ikke svellende organoleire medium som fjerner hydrokarboner med bruk av «chemisorption». Mediumet er spesielt designet for å fjerne hydrokarboner og fjerner Fenoler, PAH og BTEX.
1.5 Miljøprosjekter / forskning og utvikling

1.5.1 Energistyring
Arbeidet med implementering av energiledelsessystem fortsetter, og prinsippene i standarden ISO 50001 legges til grunn for arbeidet. Systembeskrivelsen av energistyringssystemet er implementert i det allerede etablerte miljøstyringssystemet. Det er gjort energikartlegginger, der de viktigste energiforbrukere på hver plattform (pumper, kompressorer, turbiner osv.) er identifisert, samt at det er etablert en «baseline» for energibruk på hver installasjon.

- Signifikante energiforbrukere er definert
- Energiforbedringsmuligheter er kartlagt
- Fastsetting og oppfølging av KPI’er er implementert

I 2017 har det vært bra resultater i arbeidet med redusert fakling i forbindelse med oppstart og nedstengning av prosessenlegget.

1.6 Aktive brønner

<table>
<thead>
<tr>
<th>Innretning</th>
<th>Produsent</th>
<th>Gassinjektor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skarv</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>
2. **Utslipp fra boring**

Brønn 6507/5-B-8 H er brønnoverhalt i 2017 med boreriggen Songa Enabler.

2.1 Boring med vannbasert borevæske

Tabell 9 - EEH tabell 2.1 Bruk og utslipp av vannbasert borevæske

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6507/5-B-8 H</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>SUM</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Tabell 10 - EEH Tabell 2.2 Disponering av kaks ved boring med vannbasert borevæske

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6507/5-B-8 H</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>SUM</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

2.2 Boring med oljebasert borevæske

Tabell 11 - EEH Tabell 2.3 Boring med oljebasert borevæske

NA

Tabell 12 - EEH Tabell 2.4 Disponering av kaks ved boring med oljebasert borevæske

NA
3 Utslipp av oljeholdig vann

3.1 Olje-/vannstrømmer og renseanlegg

3.1.1 Utslippstrømmer og vannbehandling

Utslipp av oljeholdig vann på Skarv kommer fra følgende kilder:

- Produsert vann
- Drenasje system for åpent avløpsvann

Renseanlegg for produsert vann består av hydrosykloner og CFU. Etter CFU'en kan vannet sendes til filtrering.

Tidligere ble det brukt metanol for å hindre hydratdannelse i rørledninger. Denne ble vasket ut av råoljen før denne blir transportert videre. Vaskevannet for råolje ender til slutt i sloptank og kjøres inn i rensesystemet oppstrøms CFU. Mengde metanol brukt er rapportert i kapittel 4. I 2017 er bruken av metanol faset ut til fordel for 80/20 MEG/vann blanding. Det er dermed ikke lenger behov for vasking av råolje og påfølgende behandling av vaskevann.

Drenasjevann blir samlet i to 50 m³ tanker. En online olje i vann-måler er knyttet opp mot drenasjevann.

![Figur 1 - Historisk utvikling av produsert vann og olje i vann konsentrasjon](image)
3.1.2 Analyse og prøvetaking av vann til utslipp

44-AP-0013 er prøvetakingspunkt som brukes for vann som går til utslipp. Dette er lokaliseret etter filterpakken. Det tas daglig kompositprøve basert på 5 prøvetakninger i døgnet.

Online olje i vann måler blir brukt for å gi raskere tilbakemelding til kontrollrom ved dårlig vannkvalitet, slik at korrigerte tiltak kan settes i verk. Resultat fra online olje i vann måler blir ikke brukt til rapportering men Aker BP ønsker på sikt å gå over til bruk av online måler.

3.1.3 Omregningsfaktor

Tabell 13 - Korrelasjonsfaktor

<table>
<thead>
<tr>
<th>Gyldig fra</th>
<th>Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.10.2016</td>
<td>0,99</td>
</tr>
<tr>
<td>23.01.2017</td>
<td>1.18</td>
</tr>
<tr>
<td>20.04.2017</td>
<td>1.30</td>
</tr>
<tr>
<td>30.06.2017</td>
<td>1.43</td>
</tr>
<tr>
<td>17.10.2017</td>
<td>1.60</td>
</tr>
</tbody>
</table>

3.1.4 Usikkerhet i vanndata

Aker BP arbeider ut fra Norsk olje og gass sin retningslinje 085 (Anbefalte retningslinjer for prøvetaking og analyse av produsert vann). Miljøprøver for å karakterisere produsert vann tas i utgangspunktet 2 ganger pr år, med 3 paralleller.

Aker BP samarbeider med Intertek West Lab i forbindelse med prøvetaking og analyse av produsert vann. Intertek West lab er sertifisert iht ISO-IEC 17025 og laboratoriet håndterer rundt 30 000 prøver i året for analyse og testing.

I forbindelse med halvårlige miljøprøver og radioaktivitetsanalyser organiserer Intertek West Lab utsendelse av prøveflasker sammen med prosedyre for prøvetaking.

For olje i vann tas det hver måned to parallellprøver. Den ene prøven analyseres offshore og den andre sendes til Intertek West Lab, sammen med en prøve av fersk, stabilisert råolje til kalibrering av instrumentet. Prøven som blir sendt til land analyseres både ved UV-fluorescens og GC/FID. Dette gjøres for å sikre at analyse resultatene offshore ligger innenfor aksepterte feilmarginer.

Intertek West Lab utførte en revisjon av prøvetaking og analyse av olje i vann ved Arjay metoden på Skarv i oktober 2013. Relativ usikkerhet ble da estimert til +/- 20 % for resultater over 10 mg/l. For resultater under 10 mg/l er måleusikkerheten høyere, da instrumentet runder av til hele tall.

Usikkerhet i mengde olje til vann pr måned blir anslått til å være ca. 10 %, forutsatt at faktor er representativ. Dette er basert på usikkerhetsberegninger gjort for Valhall og Ula og det blir antatt at dette også vil gjelde for Skarv.

Prøvetaking

Det er forventet at selve prøvetakingen gir det største bidraget til usikkerhet i kjeden fra prøvetaking til ferdig resultat. Det er også denne som er vanskelig å kvantifisere. Usikkerhetsmomenter ved prøvetaking av produsert vann inkluderer variasjoner i sammensetningen av produsert vann, svakheter ved prøvetakingspunktet, prøvetakings-prosedyrer (inkl. kompetanse hos personell som utfører prøvetakingen) og bruk av emballasje/oppbevaring frem til analyse-laboratoriet.

Kompetanse til personell sikres gjennom opplæring og bruk av kvalifisert personell offshore til å ta prøvene. I Aker BPs kompetansestyringssystem er det definert kompetansekrav for laboratorieteknikker, inklusiv krav for analyse og prøvetaking. Laboratoripersonell på Skarv er innleid fra Intertek West Lab. Analyselaboratoriet sender ut prøveflasker med instruksjoner for å sikre ensartet prøvetaking og oppbevaring.

Volummåling av utslipp til sjø

På Skarv måles volumet av vann til sjø med et elektromagnetisk flowmeter, Optiflux 4000. Apparatet har en usikkerhet på 0,4%. Dette er installert nedstrøms produsertvannsfilterne. Det er implementert vedlikeholdsrutine for kalibrering av vannmengdemåler.

Vannmengdemåler på Skarv FPSO ble byttet i september 2016.

Usikkerhet i analysedata

Måleusikkerhet kan defineres som "et estimat som karakteriserer et intervall som dekker den sanne verdi". Et måleresultat vil alltid ha en tilknyttet måleusikkerhet. Ved analyse av miljøprøver for komponenter løst i produsertvann analyseres det på 3 paralleller. En får da et resultat med et standardavvik, og forventingen er at den reelle verdien befinner seg innenfor dette intervallet. Å analysere på 3 paralleller er dermed et virkemiddel for å få bedre oversikt over usikkerheten til komponenten som analyseres. Ved analyse av miljøprøvene brukes akkrediterte analyser og analysestandarder der dette er tilgjengeliggjort. Absolutt og relativ usikkerhet er oppgitt i rapport fra analyselaboratoriet (Intertek West Lab). Når resultatet av en analyse er lavere enn kvantifiseringsgrensen benyttes halve kvantifiseringsgrensen ved rapportering av utslipp av stoffet, ihht retningslinje. Dette kan da karakterisere som teoretisk estimerte og ikke faktisk målte utslipp. Usikkerheten for oppgitt verdi er følgelig særdeles høy for disse komponentene, og når oppgitt verdi ikke er påvist ved analyse settes usikkerheten til 100 % ved innlegging av data i miljøregnskapet.

Aker BP bruker Arjay-metoden ved analyse av olje i vann offshore. En daglig analyse av olje i vann med Arjay har en typisk usikkerhet på 25 %. Dette er usikkerhet i hver enkelt måling. Den måtte olje i vann konsentrasjonen korrigeres med korrelasjonsfaktoren, som i seg selv har en usikkerhet på cirka 18 %. Det daglige beregnede resultatet vil da få en høyere kombinert usikkerhet enn bare Arjay-målingen alene.

For en måned vil det beregnes et vektet snitt for utslippet av olje til sjø for hele perioden. Usikkerheten for dette gjennomsnittet er den kombinerte usikkerheten av alle enkeltmålingene fra perioden. Gjennomsnittets-usikkerhet er vesentlig lavere enn usikkerheten for enkeltmålingene på grunn av antallet målinger som inngår i snittet. Forutsatt at faktor er representativ er usikkerhet i mengde olje til vann pr måned anslått til å være 10 %.

Usikkerhet for utslipp av radioaktive stoffer med produsert vann er beskrevet i egen rapport til Statens Strålevern.

For kjemikaledata kommer i tillegg usikkerhet relatert til forbrukt mengde og andel som går til utslipp. Andel av et produkt som går til utslipp blir estimert ut fra fordeling i olje og vann (analyseverdi for Log Pow) og best tilgjengelig
kunnskap om vannmengde i systemene. Løseligheten i vann kan variere med vannkuttet. På Skarv kan bevegelser i FPSO’en påvirke avlesning av tanknivåer, og dette vil påvirke usikkerhetsbidraget for kjemikaliedata.

3.2 Utslipp av produsert vann og olje

Fordi brønnene har forskjellig olje og gass-innhold vil brønnsammensetningen påvirke olje i vann-tallene.

Totalt er det sluppet ut ca. 1 tonn olje til sjø fra Skarv i 2017, en betydelig reduksjon fra 1.8 tonn året før.

Tabell 14 - EEH tabell 3.1 Utslipp av olje og oljeholdig vann

<table>
<thead>
<tr>
<th>Vanntype</th>
<th>Totalt vannvolum [m³]</th>
<th>Midlere oljeinnhold [mg/l]</th>
<th>Olje til sjø [tonn]</th>
<th>Injisert vann [m³]</th>
<th>Vann til sjø [m³]</th>
<th>Eksportert prod vann [m³]</th>
<th>Importert prod vann [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produsert</td>
<td>115 134</td>
<td>8.09</td>
<td>0.93</td>
<td>0</td>
<td>115 134</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fortrengning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drenasje</td>
<td>2 402</td>
<td>12.18</td>
<td>0.03</td>
<td>0</td>
<td>2 402</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>117 536</td>
<td>8.17</td>
<td>0.96</td>
<td>0</td>
<td>117 536</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.3 Utslipp av forbindelser i produsertvann

Det er foretatt to analyser av tungmetall og løste organiske stoff i produsertvann i 2017. Miljøprøver blir sendt til Intertek West Lab for analyse.

For analyseresultat med konsentrasjoner over deteksjonsgrensen er analyseverdiene brukt, i motsatt tilfelle er 50% av deteksjonsgrense brukt.

Analysemetoder for tungmetaller:
Metodikk for tungmetaller: ICP-MS. Basert på EPA 200.8
Kvikksølv: mod. NS-EN 1483
PAH/NPD: ISO 28540:2011

Metodikk for måling av løste organiske komponenter:
Olje i vann er analysert ved Intertek West Lab med GC-FID.
Analysen av BTEX og organiske syrer er utført iht Intertek West Lab interne metode M-047
Alkylfenoler er analysert iht Intertek West Lab intern metode M-038
NPD og PAH er analysert av Intertek West Lab iht ISO28540:2011

3.3.1 Mengde løste komponenter i produsertvann

Analyseresultater i form av utslipp til sjø for analysekomponenter er vist i Tabell 15 til Tabell 19.

Mengden løste stoff i produsertvannet følger i store trekk volumet av olje til sjø. I tillegg kan reservoaregenskaper og produksjonsstrategi samt prosessendringer påvirke resultatene. Oljeproduserende brønner bidrar normalt med mer formasjonsvann enn kondensatbrønner.

Naftensyrer er analysert i 2017 men rapportering avventes til industrien har fått etablert en standardisert analysemetode.

Tabell 15 - EEH tabell 3.2 Utslipp av tungmetaller med produsertvann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Konsentrasjon [g/m3]</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsen</td>
<td>0.00</td>
<td>0.07</td>
</tr>
<tr>
<td>Barium</td>
<td>81.32</td>
<td>9362.57</td>
</tr>
<tr>
<td>Jern</td>
<td>5.39</td>
<td>620.87</td>
</tr>
<tr>
<td>Bly</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Kadmium</td>
<td>0.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Kobber</td>
<td>0.01</td>
<td>1.11</td>
</tr>
<tr>
<td>Krom</td>
<td>0.00</td>
<td>0.06</td>
</tr>
<tr>
<td>Kvikksølv</td>
<td>0.00</td>
<td>0.06</td>
</tr>
<tr>
<td>Nikkel</td>
<td>0.00</td>
<td>0.23</td>
</tr>
<tr>
<td>Zink</td>
<td>0.01</td>
<td>0.84</td>
</tr>
<tr>
<td>Sum</td>
<td>86.73</td>
<td>9985.90</td>
</tr>
</tbody>
</table>

Tabell 16 - EEH tabell 3.3.a Utslipp av BTEX-forbindelser i produsertvann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Konsentrasjon [g/m3]</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzen</td>
<td>15.98</td>
<td>1839.41</td>
</tr>
<tr>
<td>Toluen</td>
<td>12.15</td>
<td>1398.70</td>
</tr>
<tr>
<td>Etylbenzen</td>
<td>0.49</td>
<td>56.87</td>
</tr>
<tr>
<td>Xylen</td>
<td>6.23</td>
<td>717.53</td>
</tr>
<tr>
<td>Sum</td>
<td>34.85</td>
<td>4012.50</td>
</tr>
</tbody>
</table>
Tabell 17 - EEH tabell 3.3.b Utslipp av PAH-forbindelser i produsertvann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Konsentrasjon [g/m3]</th>
<th>Utslipp [kg]</th>
<th>NPD [kg]</th>
<th>EPA-PAH 14 [kg]</th>
<th>EPA-PAH 16 [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naftalen</td>
<td>0.32</td>
<td>36.59</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>C1-naftalen</td>
<td>0.36</td>
<td>41.09</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2-naftalen</td>
<td>0.15</td>
<td>17.32</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3-naftalen</td>
<td>0.11</td>
<td>12.30</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenantren</td>
<td>0.01</td>
<td>1.02</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>C1-Fenantren</td>
<td>0.01</td>
<td>1.15</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2-Fenantren</td>
<td>0.01</td>
<td>1.26</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3-Fenantren</td>
<td>0.00</td>
<td>0.34</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenzotiofen</td>
<td>0.00</td>
<td>0.46</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-dibenzotiofen</td>
<td>0.01</td>
<td>0.83</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2-dibenzotiofen</td>
<td>0.01</td>
<td>0.83</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3-dibenzotiofen</td>
<td>0.00</td>
<td>0.02</td>
<td>JA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaftylen</td>
<td>0.00</td>
<td>0.07</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Acenaften</td>
<td>0.00</td>
<td>0.14</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Antrasen</td>
<td>0.00</td>
<td>0.01</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Fluoren</td>
<td>0.01</td>
<td>1.10</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Fluoranten</td>
<td>0.00</td>
<td>0.01</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Pyren</td>
<td>0.00</td>
<td>0.02</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Krysen</td>
<td>0.00</td>
<td>0.01</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)antrasen</td>
<td>0.00</td>
<td>0.00</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pyren</td>
<td>0.00</td>
<td>0.05</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Benzo(g,h,i)perylen</td>
<td>0.00</td>
<td>0.02</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Benzo(b)fluoranten</td>
<td>0.00</td>
<td>0.01</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Benzo(k)fluoranten</td>
<td>0.00</td>
<td>0.05</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Indeno(1,2,3-c,d)pyren</td>
<td>0.00</td>
<td>0.05</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Dibenz(a,h)antrasen</td>
<td>0.00</td>
<td>0.05</td>
<td>JA</td>
<td>JA</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>1.00</td>
<td>114.81</td>
<td>113.22</td>
<td>1.58</td>
<td>39.19</td>
</tr>
</tbody>
</table>

Tabell 18 - EEH tabell 3.3.c Utslipp av fenoler i produsertvann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Konsentrasjon [g/m3]</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenol</td>
<td>22.15</td>
<td>2 550.03</td>
</tr>
<tr>
<td>C1-Alkylfenoler</td>
<td>10.23</td>
<td>1 177.62</td>
</tr>
<tr>
<td>C2-Alkylfenoler</td>
<td>2.61</td>
<td>301.02</td>
</tr>
<tr>
<td>C3-Alkylfenoler</td>
<td>1.03</td>
<td>118.88</td>
</tr>
<tr>
<td>C4-Alkylfenoler</td>
<td>0.18</td>
<td>20.91</td>
</tr>
<tr>
<td>C5-Alkylfenoler</td>
<td>0.03</td>
<td>3.69</td>
</tr>
<tr>
<td>C6-Alkylfenoler</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>C7-Alkylfenoler</td>
<td>0.00</td>
<td>0.09</td>
</tr>
<tr>
<td>C8-Alkylfenoler</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>C9-Alkylfenoler</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Sum</td>
<td>36.24</td>
<td>4 172.27</td>
</tr>
</tbody>
</table>

Utslippsrapport Skarv 2017
Tabell 19 - EEH tabell 3.3.d Utslipp av organiske syrer i produsertvann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Konsentrasjon [g/m³]</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maursyre</td>
<td>0.56</td>
<td>64.21</td>
</tr>
<tr>
<td>Eddiksyre</td>
<td>101.62</td>
<td>11 699.43</td>
</tr>
<tr>
<td>Propionsyre</td>
<td>18.17</td>
<td>2 091.64</td>
</tr>
<tr>
<td>Butansyre</td>
<td>6.57</td>
<td>756.19</td>
</tr>
<tr>
<td>Pentansyre</td>
<td>1.62</td>
<td>186.63</td>
</tr>
<tr>
<td>Naftensyrer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>128.53</td>
<td>14 798.09</td>
</tr>
</tbody>
</table>
Kjemikalier benyttet til de ulike bruksområdene er registrert i Aker BP’s kjemikalieregnskap. Data herfra, sammen med opplysninger fra HOCNF beskrivelser, er benyttet til å estimere utslipp.

4.1 Samlet forbruk og utslipp

Samlet forbruk og utslipp av kjemikalier i 2017 har økt sammenlignet med året før. Utskiftningen av metanol med MEG har bidratt til dette siden MEG er en mindre effektiv hydrathemmer, samt økt dosering av avleiringishemmer.

I 2017 har det vært brønnoverhaling av en produksjonsbrønn noe som reflekteres i forbruket av bore- og brønnkjemikalier.

Tabell 20 - EEH tabell 4.1 Samlet forbruk og utslipp av kjemikalier

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Bruksområde</th>
<th>Forbruk [tonn]</th>
<th>Utslipp [tonn]</th>
<th>Injisert [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bore- og brønnkjemikalier</td>
<td>609.25</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>B</td>
<td>Produksjonskjemikalier</td>
<td>392.80</td>
<td>372.90</td>
<td>0.00</td>
</tr>
<tr>
<td>C</td>
<td>Injeksjonsvannkjemikalier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Rørledningskjemikalier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Gassbehandlingskjemikalier</td>
<td>16.56</td>
<td>14.91</td>
<td>0.00</td>
</tr>
<tr>
<td>F</td>
<td>Hjelpekjemikalier</td>
<td>28.34</td>
<td>13.58</td>
<td>0.00</td>
</tr>
<tr>
<td>G</td>
<td>Kjemikalier som tilsettes eksportstrømmen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Kjemikalier fra andre produksjonssteder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Reservoarstyring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>1 046.95</td>
<td>401.38</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Figur 2 - Samlet forbruk og utslipp av kjemikalier
4.2 **Bore og brønnkjemikalier (Bruksområde A)**

En brønn har vært brønnoverhalt i 2017. Liste over bore- og brønnkjemikalier ligger i vedlegg.

4.3 **Produksjonskjemikalier (Bruksområde B)**

Metanol som hydratinhibitor ble skiftet ut med MEG i september 2017. Denne utskiftningen er en fordel for blant annet vannbehandlingen da man unngår behov for vasking av råolje og slipper potensiale for plugging av filteranlegg for vannrensing. MEG er imidlertid en mindre effektiv hydratinhibitor enn metanol og forbruket øker som vist i Figur 3.

![Figur 3 - Forbruk og utslipp av hydratinhibitor, 2017.](image)

4.4 **Rørledningskjemikalier (Bruksområde D)**

Ikke relevant i 2017

4.5 **Gassbehandlingskjemikalier (Bruksområde E)**

Det ble i 2016 gjennomført en endring i gasstørkeanlegget som medførte betydelig redusert bruk av TEG til gasstørking. Forbruk av TEG var 16.6 tonn i 2017 mot 79.8 tonn i 2016.

4.6 **Hjelpekjemikalier (Bruksområde F)**

Castrol Transqua HT2 og HT2-N der sistnevnte er tatt i bruk i 2017, brukes i subsea-ventiler. Grunnet lekkasje i det hydrauliske systemet for styring av ventiler har det vært innført både kortsiktige og langsiktige tiltak for reduksjon av forbruk og utslipp, samt reduksjon av konsekvensene ved substitusjon av Castrol Transqua HT2.

Castrol Biostat 150 brukes som tetningsolje på thruster. For å unngå/minimere utslipp holdes systemet med et svakt undertrykk mot sjø, noe som medfører sjøvannsinnkrenging. Dette gjør at tetningsoljen regelmessig må
skiftes. I dårlig vær kan det forekomme utslipp av oljen. Forbruk og utslipp av Biostat 150 er betydelig redusert sammenlignet med året før.

Riggen Songa Enabler har gjennomført en brønnnoverhaling i 2017 og forbruk og utslipp av riggkjemikalier er inkludert under hjelpekjemikalier.

4.6.1 Lukket system

Oversikt over kjemikalier i lukkede systemer er fremstilt i Tabell 21.

Tabell 21 - Lukket system

<table>
<thead>
<tr>
<th>System</th>
<th>Product</th>
<th>Referanse</th>
<th>Tankvolume</th>
<th>Status forbruk 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framo Hydraulic system:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Ballast pumps</td>
<td>Hyspin AWH</td>
<td>65-TB-501</td>
<td>20 m³ (storage tank 1)</td>
<td>Forbruk og utslipp</td>
</tr>
<tr>
<td>-Cargo pumps</td>
<td>M 46</td>
<td>65-TB-502</td>
<td>20 m³ (storage tank 2)</td>
<td>rapportert under</td>
</tr>
<tr>
<td>-Slope pump</td>
<td></td>
<td>65-TB-503</td>
<td>3 m³ (recircul. tank)</td>
<td>hjelpekjemikalier</td>
</tr>
<tr>
<td>-Service Crane - Offloading hose real</td>
<td></td>
<td></td>
<td>28 m³ (Piping, hull) 400 L (aft service crane)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrusters (5 ea)</td>
<td>Alpha SP 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-XP-510</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-XP-520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-XP-530</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Castrol Biostat</td>
<td>Seal(tetnings sytem) thruster</td>
<td>75 ltr in total per thruster (5 ea) (tank 35 ltr & piping)</td>
<td>Forbruk og utslipp</td>
</tr>
<tr>
<td>58-XP-540</td>
<td></td>
<td></td>
<td></td>
<td>rapportert under</td>
</tr>
<tr>
<td>58-XP-550</td>
<td></td>
<td></td>
<td></td>
<td>hjelpekjemikalier</td>
</tr>
<tr>
<td></td>
<td>Hyspin AWH</td>
<td>65-TB-530</td>
<td>150 L piping</td>
<td>Forbruk og utslipp</td>
</tr>
<tr>
<td></td>
<td>M 15</td>
<td></td>
<td>9700 L Tubing, Hull part 650 L Tubing Machinery 750 L HPU</td>
<td>rapportert under</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hjelpekjemikalier</td>
</tr>
<tr>
<td>Pedestal cranes</td>
<td>Hyspin AWH-M- 73-MA-001</td>
<td>4700 L 4700 L</td>
<td>Forbruk og utslipp rapportert under hjelpekjemikalier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>73-MA-002</td>
<td>100 L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shell Tellus oil S2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transaqua HT-2N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic oil on riser bend stiffener connection system</td>
<td>Shell Tellus oil S2</td>
<td>73-MA-001</td>
<td>Forbruk/utslipp 2017: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V32</td>
<td>73-MA-002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic fluid in subseasystem (subseavalves)</td>
<td>Transaqua HT-2N</td>
<td></td>
<td>Topside hydraulic power unit -</td>
<td>Forbruk og utslipp rapportert under hjelpekjemikalier</td>
</tr>
</tbody>
</table>

Utslippsrapport Skarv 2017
5 Evaluering av kjemikalier

I Nems Chemicals-databasen er det laget en rutine for klassifisering av kjemikalier ut fra stoffenes:

- Bionedbrytning
- Bioakkumulering
- Akutt giftighet
- Kombinasjoner av punktene over.

Basert på stoffenes iboende egenskaper og egne risikovurderinger, er disse gruppert som følger:

- Stoffer på myndighetenes prioritetsliste, eller den europeiske kandidatlisten
- Stoffer i helsefarekategori sort og rød
- HOCNF farge: Svart og rød, samt gul Y3 og Y2
- Alle produkter klassifisert rød i ChemiRisk

5.1 Oppsummering av kjemikalier

De ulike bruksområdene for kjemikaliene er oppsummert mht mengder av miljøklassene gule, røde og svarte stoffgrupper. Datagrunnlag for beregninger er utslippsmengdene rapportert i kapittel 4 i. Tabell 22 viser mengder for 2017. Error! Reference source not found. viser utviklingen i utslipp over tid for hver fargekategori.

Figur 4 – Fordeling av kjemikalier på fargekategorier.

Figur 4 – Fordeling av kjemikalier på fargekategorier, Skarv, 2017
Tabell 22 - EEH tabell 5.1 Forbruk og utslipp av stoff fordelt etter deres miljøegenskaper

<table>
<thead>
<tr>
<th>Utslipp</th>
<th>Kategori</th>
<th>Miljødirektoratets fargekategori</th>
<th>Mengde brukt [tonn]</th>
<th>Mengde sluppet ut [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vann</td>
<td>200</td>
<td>Grønn</td>
<td>80.8047</td>
<td>74.4797</td>
</tr>
<tr>
<td>Stoff på PLONOR listen</td>
<td>201</td>
<td>Grønn</td>
<td>762.3571</td>
<td>302.4847</td>
</tr>
<tr>
<td>REACH Annex IV</td>
<td>204</td>
<td>Grønn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REACH Annex V</td>
<td>205</td>
<td>Grønn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mangler testdata</td>
<td>0</td>
<td>Svart</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Additivpakker som er unntatt krav om testing og ikke er testet</td>
<td>0.1</td>
<td>Svart</td>
<td>0.0143</td>
<td>0.0000</td>
</tr>
<tr>
<td>Stoff som er antatt å være eller er arvestoffskadelige eller reproduksjonsskadelige</td>
<td>1.1</td>
<td>Svart</td>
<td>0.3057</td>
<td>0.0032</td>
</tr>
<tr>
<td>Stoff på prioritetslisten eller på OSPARS prioritetsliste</td>
<td>2</td>
<td>Svart</td>
<td>0.2070</td>
<td>0.0000</td>
</tr>
<tr>
<td>Stoff på REACH kandidatliste</td>
<td>2.1</td>
<td>Svart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20% og log Pow >= 5</td>
<td>3</td>
<td>Svart</td>
<td>0.0096</td>
<td>0.0089</td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20% og giftighet EC50 eller LC50 <= 10 mg/l</td>
<td>4</td>
<td>Svart</td>
<td>0.0506</td>
<td>0.0506</td>
</tr>
<tr>
<td>To av tre kategorier:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 60%, log Pow >= 3, EC50 eller LC50 <= 10 mg/l</td>
<td>6</td>
<td>Rød</td>
<td>0.2070</td>
<td>0.0000</td>
</tr>
<tr>
<td>Uorganisk og EC50 eller LC50 <= 1 mg/l</td>
<td>7</td>
<td>Rød</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20%</td>
<td>8</td>
<td>Rød</td>
<td>0.0046</td>
<td>0.0028</td>
</tr>
<tr>
<td>Polymerere som er unntatt testkrav og ikke er testet</td>
<td>9</td>
<td>Rød</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andre Kjemikalier</td>
<td>100</td>
<td>Gul</td>
<td>194.3669</td>
<td>25.2599</td>
</tr>
<tr>
<td>Gul underkategori 1 – Forventes å biodegradere fullstendig</td>
<td>101</td>
<td>Gul</td>
<td>10.8879</td>
<td>0.9268</td>
</tr>
<tr>
<td>Gul underkategori 2 – Forventes å biodegradere til stoffer som ikke er miljøfarlige</td>
<td>102</td>
<td>Gul</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Gul underkategori 3 – Forventes å biodegradere til stoffer som kan være miljøfarlige</td>
<td>103</td>
<td>Gul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaliumhydroksid, natriumhydroksid, saltsyre, svovelsyre, salpetersyre og fosforsyre</td>
<td>104</td>
<td>Gul</td>
<td>0.0096</td>
<td>0.0089</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>1 049.0</td>
<td>403.2</td>
</tr>
</tbody>
</table>
6 Bruk og utslipp av miljøfarlig forbindelser

Data vedrørende kapittel 6.1 er konfidensiell informasjon om komponenter i kjemikalier og er unntatt offentlighet. Det inkluderes derfor ikke i denne rapporten. Dette er i hht Offentlighetslovens § 5a, jmf Forvaltningslovens § 13, 1. Ledd nr 2.

6.1 Miljøfarlige forbindelser som tilsetninger i produkter

Tabell 23 - EEH tabell 6.2 Miljøfarlige forbindelser som tilsetning i produkter (kg)

Ikke aktuelt i 2017

6.2 Miljøfarlige forbindelser som forurensing i produkter

Det er ikke brukt produkter med miljøfarlige forbindelser som forurensning i produkter i 2017.
7 Utslipp til luft

For beregning av CO2-utslipp fra brengass i turbiner benyttes feltspesifikk faktor basert på karbonmassefraksjonsmetoden. For fakkel brukes CMR-metode til å bestemme CO2 utslippsfaktor. For diesel til motorer og turbiner benyttes faktorer gitt i tillatelse til utslipp av klimakvotepliktige utslipp.

Tabell 25 viser utslippsdata for 2017 for Skarv FPSO.

For rapportering av NOx-utslipp er PEMS lagt til grunn for hele 2017. PEMS ble innført fra og med 1.august 2016.

7.1 Forbrenningsprosesser

Kilder for utslipp til luft relatert til forbrenningsprosesser er:

- Turbiner (dualfuel)
- Fakkel
- Dieselmotorer på Skarv
- Dieselmotorer på rigg

Som beskrevet i kapittel 1 har utslippene av NOx fra Skarvfeltet vært høyere enn tillatelsen. Utslippsprognosen for Skarv tilsier at dagens ramme for NOX-utslipp er for knapp på grunn av fremtidig riggaktivitet (Figur 5).

Utslippsfaktorene benyttet er:

<table>
<thead>
<tr>
<th>Turbin</th>
<th>Fuel type</th>
<th>CO2 Factor Gas (Tonn/Sm3)</th>
<th>NOX Factor Gas (kg/Sm3)</th>
<th>NOX Factor Diesel (kg/kg)</th>
<th>CH4 Factor Gas (kg/Sm3)</th>
<th>CH4 Factor Diesel (kg/kg)</th>
<th>NMVOC Factor Gas (kg/Sm3)</th>
<th>NMVOC Factor Diesel (kg/kg)</th>
<th>SOX Factor Diesel (kg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIESEL</td>
<td></td>
<td>0,0016</td>
<td>PEMS</td>
<td>0,0015</td>
<td>0,0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAS</td>
<td></td>
<td>0,021838</td>
<td>PEMS</td>
<td>0,001</td>
<td>0,0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP Fakkel</td>
<td></td>
<td>4,120</td>
<td>0,00140</td>
<td>0,0002</td>
<td>0,0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP Fakkel</td>
<td></td>
<td>2,048</td>
<td>0,00140</td>
<td>0,0002</td>
<td>0,0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel Motorer på Skarv og rigg</td>
<td>Fuel type</td>
<td>CO2 Factor Diesel (Tonnes/kg)</td>
<td>NOX Factor Diesel (kg/kg)</td>
<td>CH4 Factor Diesel (kg/kg)</td>
<td>NMVOC Factor Diesel (kg/kg)</td>
<td>SOX Factor Diesel (kg/kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td></td>
<td>0,00317</td>
<td>0,00533</td>
<td>0</td>
<td>0,000030</td>
<td>0,003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figur 5 – Prognose for CO$_2$ og NO$_X$-utslipp fra Skarvfeltet. (RNB 2018).
Tabell 24 - EEH tabell 7.1 Utslipp til luft fra forbrenningsprosesser på permanent plasserte innretninger

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakkel</td>
<td>0</td>
<td>2 934 950</td>
<td>6 930</td>
<td>4.11</td>
<td>0.18</td>
<td>0.70</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000000</td>
</tr>
<tr>
<td>Turbiner (DLE)</td>
<td>565</td>
<td>173 283 450</td>
<td>380 206</td>
<td>205.23</td>
<td>41.59</td>
<td>157.69</td>
<td>1.58</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000000</td>
</tr>
<tr>
<td>Turbiner (SAC)</td>
<td></td>
</tr>
<tr>
<td>Turbiner (WLE)</td>
<td></td>
</tr>
<tr>
<td>Motorer</td>
<td>63</td>
<td>0</td>
<td>199</td>
<td>3.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000000</td>
</tr>
<tr>
<td>Fyrte kjeler</td>
<td></td>
</tr>
<tr>
<td>Brønnertest</td>
<td></td>
</tr>
<tr>
<td>Avblødning over brennerbom</td>
<td></td>
</tr>
<tr>
<td>Andre kilder</td>
<td></td>
</tr>
<tr>
<td>Sum alle kilder</td>
<td>627</td>
<td>176 218 400</td>
<td>387 336</td>
<td>212.66</td>
<td>41.77</td>
<td>158.39</td>
<td>1.76</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Tabell 25 - EEH tabell 7.2 Utslipp til luft fra forbrenningsprosesser på mobile innretninger

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakkel</td>
<td></td>
</tr>
<tr>
<td>Turbiner (DLE)</td>
<td></td>
</tr>
<tr>
<td>Turbiner (SAC)</td>
<td></td>
</tr>
<tr>
<td>Turbiner (WLE)</td>
<td></td>
</tr>
<tr>
<td>Motorer</td>
<td>3 542</td>
<td>0</td>
<td>11 229</td>
<td>188.80</td>
<td>17.71</td>
<td>0.00</td>
<td>3.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000000</td>
</tr>
<tr>
<td>Fyrte kjeler</td>
<td></td>
</tr>
<tr>
<td>Brønnertest</td>
<td></td>
</tr>
<tr>
<td>Brønnopprekning</td>
<td></td>
</tr>
<tr>
<td>Avblødning over brennerbom</td>
<td></td>
</tr>
<tr>
<td>Andre kilder</td>
<td></td>
</tr>
<tr>
<td>Sum alle kilder</td>
<td>3 542</td>
<td>0</td>
<td>11 229</td>
<td>188.80</td>
<td>17.71</td>
<td>0.00</td>
<td>3.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
7.2 Utslippsrapport Skarv 2017 28

Utslippsrapport Skarv 2017 28

7.2 Utslipp ved lagring og lasting av olje

Produsert olje lagres i lastetanker og lastes til tankbåt for transport videre. Tabell 26 viser utslipp av VOC fordelt på CH₄ (metan) og nmVOC (flyktige forbindelser som ikke er metan) forbundet med lasting av råolje fra Skarv i 2017.

Skarv har 17 cargotanker og en lagringskapasitet på ca. 135 000 m³. Det er installert VOC-gjenvinningssystem for å redusere utslipp til luft ved lagring av olje. Systemet benytter enten HC-gass eller inertgass som teppegass i lagertankene.

VOC anlegget på Skarv hadde en regularitet på 95 % i 2017.

Ved lasting av olje til tankbåt vil det alltid være noe utslipp av flyktige forbindelser. Skarv er medlem i Industrisamarbeidsorganisasjonen VOCIC, som sender egen rapport til Miljødirektoratet. Rapporterte data for utslipp til luft fra lagring og lasting av olje i Tabell 26 er basert på tall fra VOCIC for hele året under ett. Tall rapportert her kan avvike noe fra VOCIC sin rapport på grunn av avrundinger.

<table>
<thead>
<tr>
<th>Type</th>
<th>Totalt volum [Sm³]</th>
<th>Utslippsfaktor CH₄ [kg/Sm³]</th>
<th>Utslippsfaktor nmVOC [kg/Sm³]</th>
<th>Utslipp CH₄ [tonn]</th>
<th>Utslipp nmVOC [tonn]</th>
<th>Teoretisk utslippsfaktor uten tiltak [kg/Sm³]</th>
<th>Teoretisk nmVOC utslipp uten gjennvinnings-tiltak [tonn]</th>
<th>Teoretisk nmVOC utslippsreduksjon uten gjennvinnings-tiltak [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasting</td>
<td>1 680 209</td>
<td>0.02</td>
<td>0.22</td>
<td>30.37</td>
<td>371.27</td>
<td>1.03</td>
<td>1 732.83</td>
<td>78.57</td>
</tr>
<tr>
<td>Lagring</td>
<td>1 680 209</td>
<td>0.00</td>
<td>0.06</td>
<td>4.20</td>
<td>100.81</td>
<td>1.20</td>
<td>2 016.25</td>
<td>95.00</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>34.57</td>
<td>472.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 26 – EEH Tabell 7.4: Utslipp ved lagring og lasting av olje
7.3 **Diffuse utslipp og kaldventilering**

Beregningen er basert på nye metoder i henhold til metanprosjektet og håndbok for kvantifisering av direkte metan- og nmVOC-utslipp. For Skarv medfører endringen en betydelig nedgang i utslippene av metan og nmVOC.

<table>
<thead>
<tr>
<th>Innretning</th>
<th>Utslipp CH4 [tonn]</th>
<th>Utslipp nmVOC [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKARV FPSO</td>
<td>49.13</td>
<td>23.65</td>
</tr>
<tr>
<td>SUM</td>
<td>49.13</td>
<td>23.65</td>
</tr>
</tbody>
</table>

7.4 **Bruk og utslipp av gassporstoffer**

Ikke aktuelt i 2017

Tabell 28 - EEH-tabell 8.1: Oversikt over utilsiktede utslipp av olje i løpet av rapporteringsåret

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Antall: < 0,05 m³</th>
<th>Antall: 0,05 - 1 m³</th>
<th>Antall: > 1 m³</th>
<th>Antall: Totalt antall</th>
<th>Volum [m³]: < 0,05 m³</th>
<th>Volum [m³]: 0,05 - 1 m³</th>
<th>Volum [m³]: > 1 m³</th>
<th>Totalt volum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oljer</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>0.2000</td>
<td></td>
<td>0.2000</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>0.2000</td>
<td></td>
<td>0.2000</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 29 - EEH tabell 8.2 - Oversikt over utilsiktede utslipp av kjemikalier

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Antall: < 0,05 m³</th>
<th>Antall: 0,05 - 1 m³</th>
<th>Antall: > 1 m³</th>
<th>Antall: Totalt antall</th>
<th>Volum [m³]: < 0,05 m³</th>
<th>Volum [m³]: 0,05 - 1 m³</th>
<th>Volum [m³]: > 1 m³</th>
<th>Totalt volum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kjemikalier</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>0.1500</td>
<td></td>
<td>0.1500</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>0.1500</td>
<td></td>
<td>0.1500</td>
<td></td>
</tr>
</tbody>
</table>

Utslippet av kjemikalier var relatert til testing av brannpumpe og feil på sealting som medførte lekkasje av 150 liter glykol med tilsatt korrosjonshemmer. Det ble etablert en rekke aksjoner i ettertid; deriblant gjennomgang av tidligere overhalinger av brannpumper, teknisk granskning, dokumentasjon av lærepunkter og en såkalt «after action review.»
Tabell 30 - Beskrivelse av årsak og korrigende tiltak ved akutt utslipp til sjø

<table>
<thead>
<tr>
<th>Utslipp</th>
<th>Kategori</th>
<th>Miljødirektoratets fargekategori</th>
<th>Mengde sluppet ut [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vann</td>
<td>200</td>
<td>Grønn</td>
<td></td>
</tr>
<tr>
<td>Stoff på PLONOR listen</td>
<td>201</td>
<td>Grønn</td>
<td>0.1586</td>
</tr>
<tr>
<td>REACH Annex IV</td>
<td>204</td>
<td>Grønn</td>
<td></td>
</tr>
<tr>
<td>REACH Annex V</td>
<td>205</td>
<td>Grønn</td>
<td></td>
</tr>
<tr>
<td>Mangler testdata</td>
<td>0</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Additivpakker som er unntatt krav om testing og ikke er testet</td>
<td>0.1</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Stoff som er antatt å være eller arvestoffskadelige eller reproduksjonsskadelige</td>
<td>1.1</td>
<td>Svart</td>
<td>0.0083</td>
</tr>
<tr>
<td>Stoff på prioritetslisten eller på OSPARS prioritetsliste</td>
<td>2</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Stoff på REACH kandidatliste</td>
<td>2.1</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20% og log Pow >= 5</td>
<td>3</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20% og giftighet EC50 eller LC50 <= 10 mg/l</td>
<td>4</td>
<td>Svart</td>
<td></td>
</tr>
<tr>
<td>To av tre kategorier: Bionedbrytbarhet < 60%, log Pow >= 3, EC50 eller LC50 <= 10 mg/l</td>
<td>6</td>
<td>Rød</td>
<td></td>
</tr>
<tr>
<td>Uorganisk og EC50 eller LC50 <= 1 mg/l</td>
<td>7</td>
<td>Rød</td>
<td></td>
</tr>
<tr>
<td>Bionedbrytbarhet < 20%</td>
<td>8</td>
<td>Rød</td>
<td></td>
</tr>
<tr>
<td>Polymerere som er unntatt testkrav og ikke er testet</td>
<td>9</td>
<td>Rød</td>
<td></td>
</tr>
<tr>
<td>Andre Kjemikalier</td>
<td>100</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Gul underkategori 1 – Forventes å biodegradere fullstendig</td>
<td>101</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Gul underkategori 2 – Forventes å biodegradere til stoffer som ikke er miljøfarlige</td>
<td>102</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Gul underkategori 3 – Forventes å biodegradere til stoffer som kan være miljøfarlige</td>
<td>103</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>Kaliumhydroksid, natriumhydroksid, saltsyre, svovelsyre, salpetersyre og fosforsyre</td>
<td>104</td>
<td>Gul</td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td></td>
<td>0.1670</td>
</tr>
</tbody>
</table>
Tabell 32 - EEH tabell 8.4 - Oversikt over utilsiktede utslipp til luft

<table>
<thead>
<tr>
<th>Type gass</th>
<th>Antall hendelser</th>
<th>Mengder [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-134a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R-407c</td>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>Sum</td>
<td>2</td>
<td>45</td>
</tr>
</tbody>
</table>
9 Avfall

9.1 Farlig avfall

Grunnet brønnoverhalingen i 2017 har det vært en økning i levert farlig avfall, størst økning er det i mengde oljeemulsjoner/sloppvann, tankvask og spillolje.

Figur 17 viser historisk utvikling for farlig avfall.

Tabell 33 - EEH tabell 9.1 - Farlig avfall

<table>
<thead>
<tr>
<th>Avfallstype</th>
<th>Beskrivelse</th>
<th>EAL-kode</th>
<th>Avfallstoffnr.</th>
<th>Tatt til land [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annet</td>
<td>Drivstoff og fyringsolje</td>
<td>13 07 01</td>
<td>7023</td>
<td>0.02</td>
</tr>
<tr>
<td>Annet</td>
<td>Organisk avfall uten halogen</td>
<td>07 01 04</td>
<td>7152</td>
<td>0.13</td>
</tr>
<tr>
<td>Annet</td>
<td>Organiske løsemidler med halogen</td>
<td>14 06 02</td>
<td>7041</td>
<td>0.06</td>
</tr>
<tr>
<td>Annet avfall</td>
<td>Rengjøringsmidler</td>
<td>07 06 01</td>
<td>7133</td>
<td>0.23</td>
</tr>
<tr>
<td>Batterier</td>
<td>Blyakkumulatører</td>
<td>16 06 01</td>
<td>7092</td>
<td>0.27</td>
</tr>
<tr>
<td>Batterier</td>
<td>Kadmiumholdige batterier</td>
<td>16 06 02</td>
<td>7084</td>
<td>0.25</td>
</tr>
<tr>
<td>Batterier</td>
<td>Småbatterier</td>
<td>20 01 33</td>
<td>7093</td>
<td>0.05</td>
</tr>
<tr>
<td>Borerelatert avfall</td>
<td>Oljebasert borevæske</td>
<td>16 50 71</td>
<td>7142</td>
<td>0.25</td>
</tr>
<tr>
<td>Borerelatert avfall</td>
<td>Vannbasert borevæske som inneholder farlige stoffer</td>
<td>16 50 73</td>
<td>7144</td>
<td>14.00</td>
</tr>
<tr>
<td>Kjemikaler</td>
<td>Organisk avfall med halogen</td>
<td>16 05 06</td>
<td>7151</td>
<td>0.26</td>
</tr>
<tr>
<td>Kjemikaler</td>
<td>Organisk avfall med halogen</td>
<td>16 05 08</td>
<td>7151</td>
<td>0.08</td>
</tr>
<tr>
<td>Kjemikaler</td>
<td>Organisk avfall uten halogen</td>
<td>15 01 10</td>
<td>7152</td>
<td>0.43</td>
</tr>
<tr>
<td>Kjemikaler</td>
<td>Syrer, uorganiske</td>
<td>16 05 07</td>
<td>7131</td>
<td>3.50</td>
</tr>
<tr>
<td>Lystoffrør</td>
<td>Lystoffrør</td>
<td>20 01 21</td>
<td>7086</td>
<td>1.09</td>
</tr>
<tr>
<td>Løsemidler</td>
<td>Organiske løsemidler uten halogen</td>
<td>14 06 03</td>
<td>7042</td>
<td>3.01</td>
</tr>
<tr>
<td>Løsemidler</td>
<td>Organiske løsemidler uten halogen</td>
<td>16 05 08</td>
<td>7042</td>
<td>0.34</td>
</tr>
<tr>
<td>Maling, alle typer</td>
<td>Maling, lim, lakk som er farlig avfall</td>
<td>08 01 11</td>
<td>7051</td>
<td>1.56</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Drivstoff og fyringsolje</td>
<td>13 07 03</td>
<td>7023</td>
<td>2.97</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Olje- og fettavfall</td>
<td>12 01 12</td>
<td>7021</td>
<td>1.09</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Oljeemulsjoner, sloppvann</td>
<td>16 10 01</td>
<td>7030</td>
<td>102.92</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Oljefiltre</td>
<td>15 02 02</td>
<td>7024</td>
<td>0.52</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Oljeforurenset masse</td>
<td>15 02 02</td>
<td>7022</td>
<td>8.96</td>
</tr>
<tr>
<td>Oljeholdig avfall</td>
<td>Spillolje, ikke refusjonsberettig</td>
<td>13 08 99</td>
<td>7012</td>
<td>24.79</td>
</tr>
<tr>
<td>Spraybokser</td>
<td>Spraybokser</td>
<td>16 05 04</td>
<td>7055</td>
<td>0.05</td>
</tr>
<tr>
<td>Tankvask-avfall</td>
<td>Oljeholdige emulsjoner fra boredekk</td>
<td>16 07 08</td>
<td>7031</td>
<td>19.00</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td></td>
<td>185.81</td>
</tr>
</tbody>
</table>
9.2 Kildesortert avfall

Mengden næringsavfall fra Skarvfeltet har de siste årene variert i området 140 til 220 tonn.

Tabell 34 - EEH tabell 9.2 Kildesortert vanlig avfall

<table>
<thead>
<tr>
<th>Type</th>
<th>Mengde [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matbefengt avfall</td>
<td>33.22</td>
</tr>
<tr>
<td>Våtorganisk avfall</td>
<td>4.47</td>
</tr>
<tr>
<td>Papir</td>
<td>9.93</td>
</tr>
<tr>
<td>Papp (brunt papir)</td>
<td>0.38</td>
</tr>
<tr>
<td>Treverk</td>
<td>31.27</td>
</tr>
<tr>
<td>Glass</td>
<td>1.09</td>
</tr>
<tr>
<td>Plast</td>
<td>6.88</td>
</tr>
<tr>
<td>EE-avfall</td>
<td>3.13</td>
</tr>
<tr>
<td>Restavfall</td>
<td>17.41</td>
</tr>
<tr>
<td>Metall</td>
<td>60.34</td>
</tr>
<tr>
<td>Blåsesand</td>
<td>18.21</td>
</tr>
<tr>
<td>Sprengstoff</td>
<td>0</td>
</tr>
<tr>
<td>Annet</td>
<td>15.16</td>
</tr>
<tr>
<td>Sum</td>
<td>201.48</td>
</tr>
</tbody>
</table>
Figur 7 – Fordeling av næringsavfall, 2017.
10.1 Tabeller

Tabell 35 - EEH-tabell 10.1a Skarv FPSO/Produsert. Månedsoversikt av oljeinhold

<table>
<thead>
<tr>
<th>Måned</th>
<th>Mengde vann [m³]</th>
<th>Mengde reinjisert vann [m³]</th>
<th>Mengde vann sluppet til sjø [m³]</th>
<th>Oljekonsentrasjon i utslipp til sjø [mg/l]</th>
<th>Oljemengde til sjø [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>11 454.38</td>
<td>0.00</td>
<td>11 454.38</td>
<td>9.46</td>
<td>0.11</td>
</tr>
<tr>
<td>Februar</td>
<td>9 586.14</td>
<td>0.00</td>
<td>9 586.14</td>
<td>10.87</td>
<td>0.10</td>
</tr>
<tr>
<td>Mars</td>
<td>9 777.62</td>
<td>0.00</td>
<td>9 777.62</td>
<td>4.97</td>
<td>0.05</td>
</tr>
<tr>
<td>April</td>
<td>10 194.46</td>
<td>0.00</td>
<td>10 194.46</td>
<td>8.25</td>
<td>0.08</td>
</tr>
<tr>
<td>Mai</td>
<td>10 854.69</td>
<td>0.00</td>
<td>10 854.69</td>
<td>8.76</td>
<td>0.10</td>
</tr>
<tr>
<td>Juni</td>
<td>8 708.63</td>
<td>0.00</td>
<td>8 708.63</td>
<td>6.87</td>
<td>0.06</td>
</tr>
<tr>
<td>Juli</td>
<td>10 248.63</td>
<td>0.00</td>
<td>10 248.63</td>
<td>8.84</td>
<td>0.09</td>
</tr>
<tr>
<td>August</td>
<td>9 881.24</td>
<td>0.00</td>
<td>9 881.24</td>
<td>8.82</td>
<td>0.09</td>
</tr>
<tr>
<td>September</td>
<td>7 616.44</td>
<td>0.00</td>
<td>7 616.44</td>
<td>10.09</td>
<td>0.08</td>
</tr>
<tr>
<td>Oktober</td>
<td>9 329.83</td>
<td>0.00</td>
<td>9 329.83</td>
<td>5.61</td>
<td>0.05</td>
</tr>
<tr>
<td>November</td>
<td>7 767.34</td>
<td>0.00</td>
<td>7 767.34</td>
<td>8.49</td>
<td>0.07</td>
</tr>
<tr>
<td>Desember</td>
<td>9 714.14</td>
<td>0.00</td>
<td>9 714.14</td>
<td>5.95</td>
<td>0.06</td>
</tr>
<tr>
<td>Sum</td>
<td>115 133.53</td>
<td>0.00</td>
<td>115 133.53</td>
<td>8.09</td>
<td>0.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Måned</th>
<th>Mengde vann [m³]</th>
<th>Mengde reinjisert vann [m³]</th>
<th>Mengde vann sluppet til sjø [m³]</th>
<th>Oljekonsentrasjon i utslipp til sjø [mg/l]</th>
<th>Oljemengde til sjø [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januar</td>
<td>26.02</td>
<td>0.00</td>
<td>26.02</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Februar</td>
<td>122.84</td>
<td>0.00</td>
<td>122.84</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Mars</td>
<td>15.60</td>
<td>0.00</td>
<td>15.60</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>April</td>
<td>49.44</td>
<td>0.00</td>
<td>49.44</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Mai</td>
<td>20.80</td>
<td>0.00</td>
<td>20.80</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Juni</td>
<td>11.31</td>
<td>0.00</td>
<td>11.31</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Juli</td>
<td>65.30</td>
<td>0.00</td>
<td>65.30</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>August</td>
<td>68.06</td>
<td>0.00</td>
<td>68.06</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>September</td>
<td>6.94</td>
<td>0.00</td>
<td>6.94</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Oktober</td>
<td>22.82</td>
<td>0.00</td>
<td>22.82</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>November</td>
<td>15.50</td>
<td>0.00</td>
<td>15.50</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Desember</td>
<td>35.36</td>
<td>0.00</td>
<td>35.36</td>
<td>0.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Sum</td>
<td>459.99</td>
<td>0.00</td>
<td>459.99</td>
<td>0.26</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Måned</th>
<th>Mengde vann [m³]</th>
<th>Mengde reinjisert vann [m³]</th>
<th>Mengde vann sluppet til sjø [m³]</th>
<th>Oljekonsentrasjon i utslipp til sjø [mg/l]</th>
<th>Oljemengde til sjø [tonn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oktober</td>
<td>180.00</td>
<td>0.00</td>
<td>180.00</td>
<td>15.00</td>
<td>0.00</td>
</tr>
<tr>
<td>November</td>
<td>1 014.00</td>
<td>0.00</td>
<td>1 014.00</td>
<td>15.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Desember</td>
<td>748.00</td>
<td>0.00</td>
<td>748.00</td>
<td>15.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Sum</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Starcide</td>
<td>Nei</td>
<td>01 - Biosid</td>
<td>0.88</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Monoetylenglykol (MEG)</td>
<td>Nei</td>
<td>07 - Hydrathemmer</td>
<td>246.99</td>
<td>0.00</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Soda ash</td>
<td>Nei</td>
<td>11 - pH-regulerende kjemikalier</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>Nei</td>
<td>11 - pH-regulerende kjemikalier</td>
<td>7.06</td>
<td>0.00</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>BaraLube W-511</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>7.45</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>BARAZAN L</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
<td>Rød</td>
</tr>
<tr>
<td>NF-6</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>0.21</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>STEELSEAL(all grades)</td>
<td>Nei</td>
<td>25 - Sementeringskjemikalier</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Oxygon</td>
<td>Nei</td>
<td>26 - Kompletteringskjemikalier</td>
<td>1.28</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sodium bromide</td>
<td>Nei</td>
<td>26 - Kompletteringskjemikalier</td>
<td>21.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>Nei</td>
<td>26 - Kompletteringskjemikalier</td>
<td>181.83</td>
<td>0.00</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>EDC 95-11</td>
<td>Nei</td>
<td>29 - Oljebasert basevæske</td>
<td>140.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sourscaev</td>
<td>Nei</td>
<td>33 - H2S-fjerner</td>
<td>1.50</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Baracarb (all grades)</td>
<td>Nei</td>
<td>37 - Andre</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Lime</td>
<td>Nei</td>
<td>37 - Andre</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>609.25</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC6202A</td>
<td>Nei</td>
<td>01 - Biosid</td>
<td>3.94</td>
<td>3.92</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Protectol(TM) GA 50</td>
<td>Nei</td>
<td>01 - Biosid</td>
<td>2.47</td>
<td>2.47</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>SCALETREAT DF 8093D</td>
<td>Nei</td>
<td>03 - Avleiringshemmer</td>
<td>21.72</td>
<td>20.98</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>OS2</td>
<td>Nei</td>
<td>05 - Oksygenfjerner</td>
<td>0.58</td>
<td>0.46</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>MEG/Vann 80/20</td>
<td>Nei</td>
<td>07 - Hydrathemmer</td>
<td>281.00</td>
<td>279.98</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Methanol</td>
<td>Nei</td>
<td>07 - Hydrathemmer</td>
<td>64.77</td>
<td>64.37</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>Emulsotron CC3309-G</td>
<td>Nei</td>
<td>15 - Emulsjonsbryter</td>
<td>18.32</td>
<td>0.73</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>392.80</td>
<td>372.90</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIETYLEN-GLYCOL</td>
<td>Nei</td>
<td>08 - Gasstørkekjemikalier</td>
<td>16.56</td>
<td>14.90</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>COS 5599</td>
<td>Nei</td>
<td>11 - pH-regulerende kjemikalier</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>16.56</td>
<td>14.91</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR 71</td>
<td>Nei</td>
<td>01 - Biosid</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>KI-302C</td>
<td>Nei</td>
<td>02 - Korrosjonshemmer</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Castrol Alpha SP 100</td>
<td>Nei</td>
<td>08 - Gasstørkekjemikalier</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Svart</td>
</tr>
<tr>
<td>TRIETYLENGLYCOL</td>
<td>Nei</td>
<td>08 - Gasstørkekjemikalier</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>TRIETYLENGLYCOL</td>
<td>Nei</td>
<td>09 - Frostvæske</td>
<td>13.90</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Castrol Hyspin AWH-M 15</td>
<td>Nei</td>
<td>10 - Hydraulikkvæske (inkl. BOP-væske)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Svart</td>
</tr>
<tr>
<td>Castrol Hyspin AWH-M 46</td>
<td>Nei</td>
<td>10 - Hydraulikkvæske (inkl. BOP-væske)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Svart</td>
</tr>
<tr>
<td>Castrol Transaqua HT2</td>
<td>Nei</td>
<td>10 - Hydraulikkvæske (inkl. BOP-væske)</td>
<td>1.37</td>
<td>1.37</td>
<td>0.00</td>
<td>Rød</td>
</tr>
<tr>
<td>Castrol Transaqua HT2-N</td>
<td>Nei</td>
<td>10 - Hydraulikkvæske (inkl. BOP-væske)</td>
<td>3.38</td>
<td>3.16</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sodium hydroxide (30%)</td>
<td>Nei</td>
<td>11 - pH-regulerende kjemikalier</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sodium hydroxide 30%</td>
<td>Nei</td>
<td>11 - pH-regulerende kjemikalier</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Castrol BioStat 150</td>
<td>Nei</td>
<td>12 - Friksjonsreduserende kjemikalier</td>
<td>0.27</td>
<td>0.27</td>
<td>0.00</td>
<td>Svart</td>
</tr>
<tr>
<td>Arctic Foam 201 AF AFFF 1%</td>
<td>Nei</td>
<td>28 - Brannslukkekjemikalier (AFFF)</td>
<td>1.41</td>
<td>1.41</td>
<td>0.00</td>
<td>Svart</td>
</tr>
<tr>
<td>Arctic Foam 203 AFFF 3%</td>
<td>Nei</td>
<td>28 - Brannslukkekjemikalier (AFFF)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>Svart</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>20.44</td>
<td>6.20</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 42 – EEH-tabell 10.2e: SONGA ENABLER / F - Hjelpekjemikalier. Massebalanse for alle kjemikalier etter funksjonsgruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoetylenlykol (MEG)</td>
<td>Nei</td>
<td>07 - Hydrathemmer</td>
<td>6.38</td>
<td>6.38</td>
<td>0.00</td>
<td>Grønn</td>
</tr>
<tr>
<td>ERIFON HD 603 HP (NO DYE)</td>
<td>Nei</td>
<td>10 - Hydraulikkvæske (inkl. BOP-væske)</td>
<td>1.06</td>
<td>1.06</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>HydraWay HVXA 32</td>
<td>Nei</td>
<td>10 - Hydraulikkvæske (inkl. BOP-væske)</td>
<td>0.52</td>
<td>0.00</td>
<td>0.00</td>
<td>Svart</td>
</tr>
<tr>
<td>PANOLIN ATLANTIS 22</td>
<td>Nei</td>
<td>10 - Hydraulikkvæske (inkl. BOP-væske)</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>JET-LUBE® NCS-3OECF</td>
<td>Nei</td>
<td>23 - Gjengefett</td>
<td>0.15</td>
<td>0.02</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Microsit Polar</td>
<td>Nei</td>
<td>27 - Vaske-og rensemidler</td>
<td>1.75</td>
<td>1.75</td>
<td>0.00</td>
<td>Gul</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>9.96</td>
<td>9.21</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 43 - EEH-tabell 10.3a: SKARV FPSO / BTEX. Prøvetaking og analyse for de enkelte stoffene i produsert vann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Teknikk</th>
<th>Deteksjonsgrense [g/m³]</th>
<th>Konsentrasjon i prøve [g/m³]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzen</td>
<td>BTEX, organiske syrer i avløps og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>0.0100</td>
<td>15.9763</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>1 839.41</td>
</tr>
<tr>
<td>Etylbenzen</td>
<td>BTEX, organiske syrer i avløps og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>0.0200</td>
<td>0.4940</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>56.87</td>
</tr>
<tr>
<td>Toluen</td>
<td>BTEX, organiske syrer i avløps og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>0.0200</td>
<td>12.1485</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>1 398.70</td>
</tr>
<tr>
<td>Xylen</td>
<td>BTEX, organiske syrer i avløps og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>0.0200</td>
<td>6.2322</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>717.53</td>
</tr>
</tbody>
</table>

Tabell 44 - EEH-tabell 10.3b: SKARV FPSO / Fenoler. Prøvetaking og analyse for de enkelte stoffene i produsert vann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Deteksjonsgrense [g/m³]</th>
<th>Konsentrasjon i prøve [g/m³]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC/MS</td>
<td>10.2283</td>
<td></td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>1 177.62</td>
</tr>
<tr>
<td>C2-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC/MS</td>
<td>2.6145</td>
<td></td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>301.02</td>
</tr>
<tr>
<td>C3-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC/MS</td>
<td>1.0325</td>
<td></td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>118.88</td>
</tr>
<tr>
<td>Forbindelse</td>
<td>Metode</td>
<td>Deteksjonsgrense [g/m³]</td>
<td>Konsentrasjon i prøve [g/m³]</td>
<td>Analyse laboratorium</td>
<td>Dato for prøvetaking</td>
<td>Utslipp [kg]</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>C4-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC/MS</td>
<td>0.1816</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>20.91</td>
<td></td>
</tr>
<tr>
<td>C5-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC/MS</td>
<td>0.0321</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td>C6-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC/MS</td>
<td>0.0002</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>C7-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC/MS</td>
<td>0.0008</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>C8-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC/MS</td>
<td>0.0000</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>C9-Alkylfenoler</td>
<td>Alkylfenoler i vann, GC/MS</td>
<td>0.0001</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Fenol</td>
<td>Alkylfenoler i vann, GC/MS</td>
<td>0.0010</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>2 550.03</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 45 - EEH-tabell 10.3c: SKARV FPSO / Olje i vann. Prøvetaking og analyse for de enkelte stoffene i produsert vann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Teknikk</th>
<th>Deteksjonsgrense [g/m³]</th>
<th>Konsentrasjon i prøve [g/m³]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olje i vann (Installasjon)</td>
<td>Olje i vann (C7-C40), GC/FID</td>
<td>M-039, Mod NS-EN ISO9377-2 / OSPAR 2005-15</td>
<td>0.4000</td>
<td>5.1064</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>587.92</td>
</tr>
</tbody>
</table>

Tabell 46 - EEH-tabell 10.3d: SKARV FPSO / Organiske syrer. Prøvetaking og analyse for de enkelte stoffene i produsert vann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Teknikk</th>
<th>Deteksjonsgrense [g/m³]</th>
<th>Konsentrasjon i prøve [g/m³]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butansyre</td>
<td>BTEX, organiske syrer i avløps- og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>2.0000</td>
<td>6.5679</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>756.19</td>
</tr>
<tr>
<td>Eddiksyre</td>
<td>BTEX, organiske syrer i avløps- og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>2.0000</td>
<td>101.6162</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>11 699.43</td>
</tr>
<tr>
<td>Maursyre</td>
<td>BTEX, organiske syrer i avløps- og sjøvann.</td>
<td>HS/GC/MS</td>
<td>2.0000</td>
<td>0.5577</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>64.21</td>
</tr>
<tr>
<td>Pentansyre</td>
<td>BTEX, organiske syrer i avløps- og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>2.0000</td>
<td>1.6209</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>186.63</td>
</tr>
<tr>
<td>Propionsyre</td>
<td>BTEX, organiske syrer i avløps- og sjøvann. HS/GC/MS</td>
<td>M-047</td>
<td>2.0000</td>
<td>18.1671</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>2 091.64</td>
</tr>
<tr>
<td>Forbindelse</td>
<td>Metode</td>
<td>Teknikk</td>
<td>Deteksjonsgrense [g/m³]</td>
<td>Konsentrasjon i prøve [g/m³]</td>
<td>Analyse laboratorium</td>
<td>Dato for prøvetaking</td>
<td>Utslipp [kg]</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Acenaften</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0012</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.14</td>
</tr>
<tr>
<td>Acenaften</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0006</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.07</td>
</tr>
<tr>
<td>Antrasen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00002</td>
<td>0.0001</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.01</td>
</tr>
<tr>
<td>Benzo(a)antrasen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0000</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.00</td>
</tr>
<tr>
<td>Benzo(a)pyren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0004</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.05</td>
</tr>
<tr>
<td>Benzo(b)fluoranten</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00002</td>
<td>0.0001</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.01</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0001</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.02</td>
</tr>
<tr>
<td>Benzo(k)fluoranten</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0004</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.05</td>
</tr>
<tr>
<td>Forbindelse</td>
<td>Metode</td>
<td>Teknikk</td>
<td>Deteksjonsgrense [g/m³]</td>
<td>Konsentrasjon i prøve [g/m³]</td>
<td>Analyse laboratorium</td>
<td>Dato for prøvetaking</td>
<td>Utslipp [kg]</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>C1-Fenantren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0100</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>1.15</td>
</tr>
<tr>
<td>C1-dibenzotiofen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0072</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.83</td>
</tr>
<tr>
<td>C1-naftalen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.3569</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>41.09</td>
</tr>
<tr>
<td>C2-Fenantren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0110</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>1.26</td>
</tr>
<tr>
<td>C2-dibenzotiofen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0072</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.83</td>
</tr>
<tr>
<td>C2-naftalen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.1504</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>17.32</td>
</tr>
<tr>
<td>C3-Fenantren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0030</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.34</td>
</tr>
<tr>
<td>C3-dibenzotiofen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.0002</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.02</td>
</tr>
<tr>
<td>C3-naftalen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0.1068</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>12.30</td>
</tr>
<tr>
<td>Forbindelse</td>
<td>Metode</td>
<td>Teknikk</td>
<td>Deteksjonsgrense [g/m³]</td>
<td>Konsentrasjon i prøve [g/m³]</td>
<td>Analyse laboratorium</td>
<td>Dato for prøvetaking</td>
<td>Utslipp [kg]</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>------------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Dibenz(a,h)antrasen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0,0004</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0,05</td>
</tr>
<tr>
<td>Dibenzotiofen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0,0040</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0,46</td>
</tr>
<tr>
<td>Fenantren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0,0089</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>1,02</td>
</tr>
<tr>
<td>Fluoranten</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00002</td>
<td>0,0001</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0,01</td>
</tr>
<tr>
<td>Fluoren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0,0095</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>1,10</td>
</tr>
<tr>
<td>Indeno(1,2,3-c,d)pyren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00002</td>
<td>0,0004</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0,05</td>
</tr>
<tr>
<td>Krysen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0,0001</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0,01</td>
</tr>
<tr>
<td>Naftalen</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00002</td>
<td>0,3178</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>36,59</td>
</tr>
<tr>
<td>Pyren</td>
<td>PAH/NPD i vann, GC/MS</td>
<td>M-036, ISO28540:2011</td>
<td>0,00001</td>
<td>0,0002</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0,02</td>
</tr>
</tbody>
</table>
Tabell 48 - EEH-tabell 10.3f: SKARV FPSO / Tungmetaller. Prøvetaking og analyse for de enkelte stoffene i produsert vann

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Teknikk</th>
<th>Deteksjongrense [g/m³]</th>
<th>Konsentrasjon i prøve [g/m³]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsen</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008, Basert på EPA200.8</td>
<td>0.0010</td>
<td>0.0006</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.07</td>
</tr>
<tr>
<td>Barium</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008, Basert på EPA200.8</td>
<td>0.0100</td>
<td>81.3192</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>9 362.57</td>
</tr>
<tr>
<td>Bly</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008, Basert på EPA200.8</td>
<td>0.0003</td>
<td>0.0004</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.05</td>
</tr>
<tr>
<td>Jern</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008, Basert på EPA200.8</td>
<td>0.0200</td>
<td>5.3926</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>620.87</td>
</tr>
<tr>
<td>Kadmium</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008, Basert på EPA200.8</td>
<td>0.0002</td>
<td>0.0005</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.05</td>
</tr>
<tr>
<td>Kobber</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008, Basert på EPA200.8</td>
<td>0.0005</td>
<td>0.0096</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>1.11</td>
</tr>
<tr>
<td>Krom</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008, Basert på EPA200.8</td>
<td>0.0004</td>
<td>0.0005</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.06</td>
</tr>
<tr>
<td>Kvikksølv</td>
<td>Kvikksølv i sjøvann, FIMS</td>
<td>M-020, Mod.NS-EN 1483</td>
<td>0.0000</td>
<td>0.0005</td>
<td>Intertek west Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Forbindelse
Metode
Teknikk
Deteksjonsgrense [g/m³]
Konsentrasjon i prøve [g/m³]
Analyse laboratorium
Dato for prøvetaking
Utslipp [kg]

<table>
<thead>
<tr>
<th>Forbindelse</th>
<th>Metode</th>
<th>Teknikk</th>
<th>Deteksjonsgrense [g/m³]</th>
<th>Konsentrasjon i prøve [g/m³]</th>
<th>Analyse laboratorium</th>
<th>Dato for prøvetaking</th>
<th>Utslipp [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nikkel</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008, Basert på EPA200.8</td>
<td>0.0015</td>
<td>0.0020</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.23</td>
</tr>
<tr>
<td>Zink</td>
<td>Metaller i sjøvann, ICP-MS</td>
<td>a-v-008, Basert på EPA200.8</td>
<td>0.0040</td>
<td>0.0073</td>
<td>Intertek West Lab</td>
<td>2016-10-29, 2017-02-07, 2017-09-19</td>
<td>0.84</td>
</tr>
</tbody>
</table>