Well integrity life cycle

Øyvind Lunde
Conocophillips
Agenda:

1. Introduction
2. Wells integrity lifecycle timeline
3. Design and Plan
4. Placement of casing shoes
5. Isolation
6. Wells Operating envelope
7. Systems and maintenance during operation
8. Slot recovery and P&A
This presentation is meant to create a discussion on what is important to consider and how we can improve the way we plan, design, make, operate and end a well with a Well Integrity Life Cycle approach.
Well Life cycle - timeline

- Historical focus during construction
- Current focus during construction
- Future focus during construction
Design and Plan

- Many reasons to choose a design but in a well integrity perspective it is of the uttermost importance to highlight the following:

 - Use a design that is optimized with respect to the formation in the specific area (to make sure to have integrity in all relevant layers)

 - Design envelope fit for purpose

 - Materials used (corrosion/erosion etc)

 - Reliability of equipment

 - Monitoring capabilities

 - How to avoid Sustained casing pressure, X-flow and how to have "the best defense" against collapses.
Design and Plan

• Plan:
 • Plan should have input from well integrity personnel or well integrity personnel should be involved in the planning.
 • Plan must always be revised by key personnel
 • Plan with contingences (plan for the unplanned)
 • Avoid unplanned ”quick fix”.
 • Plan the Work and Work the Plan (a plan is a live document).
Placement of casing shoes

- Where we place the casing shoes is not only important for the drilling phase of the wells life cycle, it has also a big influence on well integrity in a life cycle approach.

- All casing shoes that are set in formation that has enough strength to withstand reservoir pressure will give you increased safety and options with regards to barriers against a reservoir.

- Placement of casing shoes and the isolation of these is a deciding factor to avoid sustained casing pressure including leaks of hydrocarbons into annuluses.

- Smart thinking with a life cycle approach with regards to placement of casing shoes can increase the lifetime of the well and reduce cost in a P&A phase.
Isolation

- Isolation is probably the single most important barrier element and one of the most difficult to establish and verify.

- When we isolate we are trying to re-establish the seal that the formation had prior to penetrating it when drilling.

- Good isolation reduces overall risk and reduces risk of sustained casing pressure.

- Good isolation can increase well lifetime and reduce cost in workovers and P&A.

- We need more isolation tools (medium) in our toolbox and increase our efforts on methods/technology to be able to lift medium. This to ensure proper isolation in all phases.
Wells Operating envelope

- Every well that we make must have a clear operating envelope.
- Make sure to stay within the operating envelope.
- If we have any incidents that takes us outside the operating envelope with regards to loads etc., this shall be documented, reported and investigated.
- Avoid any unnecessary strain on the well e.g. evacuated annuli etc. whenever possible.
- Use the well for the purpose that it is designed for.
Systems and maintenance during operation

- Training.
- Management system
- Proper handover process and documentation.
- Preventive maintenance program on all relevant equipment and at a frequency that is optimized for the well.
- Competent personnel and enough resources to maintain the wells.
- Important with document control and steering systems, to be able to trend equipment and sources of failure.
- Preventive maintenance is meant to be a proactive system to minimize the risk of failure.
- Experience transfer.
Slot recovery and P&A

- How we design, drill, complete, operate, intervene and maintain a well will have an influence on P&A.

- P&A should be done as soon as possible when a well is no longer producing.

- It is crucial that a good P&A (securing) is done on existing wellbore before re-use of the slot. Failing to do so can cause unintentional leaks into formation or/and a leak into the new well.

- Good isolation when building a well makes it more likely to get an appropriate P&A and will in most cases reduce cost.
Well Life cycle - timeline