Testing of Leak detection systems

- Testing of sensors from prototype to operation subsea

03.11.2011 – Truls M Larsen
Content

• Sensor Qualification Testing
• Sensor Production testing
• Sensor Subsea System integration testing
• Sensor Complete system integration
• Commissioning & operational testing
Introduction

• Why all these comprehensive tests?
 – Sensors fail!
 – Other sensors give updated/live values
 • Sensor integrity verification
 – Leakage sensors are silent sensors
 • No leakage or “dead” sensor

• Building confidence in the product and its reliability
Sensor Qualification Testing

• Typical requirements:
 – ISO, API, materials etc...

• Does this make the sensor work?
 – What is principle behind detection?
 – What is the environmental conditions?
 – What is the criterias for detection?

• Apply FMECA process in the design (FMIRR in DNV RP A203)
 – Standard “parts” through general/international standards testing
 – Be stricter than “usual” on operational elements
 • Creative thinking – testing to “destruction”/limit testing
 • Determine limits
Qualification acceptance criteria

• Detection criteria not set by Oil companies
• FMC requirements for leakage detection
 – Primary:
 • Retrievability
 • Design life 25 years
 • Leakage rate
 • Distance to leakage
 • Direction of leakage
 – Secondary:
 • Minimum pressure drop from pipe to sea (for noise measurement)
 • Leakage position (3D coordinates)
 – Current values driven by Naxys capabilities
 • Naxys – FMC qualified supplier
Sensor Production testing

- Standard tests:
 - Lifetime of electronics and electric “elements”
 - ISO, API, customer specific requirements, etc...
 - Note: harsh testing reduces lifetime...
 - Hyperbaric integrity – Mechanical strength:
 - He-leak test of seals
 - Hyperbaric pressure test of full assembly
 - Requires diagnostic sensor for detecting water intrusion
 - Final Acceptance Test – Functionality test
 - Does the sensor work as specified/required?
Production - extended

- Other tests - Extended functionality test
 - Leakage detection under simulated conditions
 - Leakage detection under semi real conditions
 - Leakage detection under real conditions
 - All or one unit

Functional test @ quay side
Field specific qualification

• Test project/installation specific data
 – One unit
 – Real conditions
 • water depth & water temperatures
 • Similar fluids – density, viscosity, compressibility
 • Distance – at the limit of sensor
 • Leakage flow rate and/or differential pressure

• Need for deep water stations and/or large pressure vessels
Sensor Subsea System integration testing

• Simulators – Can the signal be interpreted and sent topside
 – Output signals go through long chain of modules: SCM, SPCU, TPU, data collector machines, etc...
 – Testing one step at a time

• Must “perform” as sensor
 – Power consumption
 • Inrush
 • Steady state
 – Signal output
 – Receive signals
 • Configuration
 • Software download
Integration testing – challenges

- Simulators often needed before sensor production starts

- Software
 - Advanced software for subsea processing are highly configurable
 - Wrong configuration supplied in sensor and/or simulator

- Wiring
 - 12 pin connectors & TCP/IP or Modbus/TCP
 - Which is receiver/sender
Sensor - Complete system integration

- Commissioning of subsea system
 - Sensor communication tested and established
Testing during operation

• Suppliers/vendors should
 – Propose methods of testing
 – Produce test equipment
 – Produce test procedures with acceptance criteria
 – Ref. presentations:
 • Experience with acoustic leak detection – Vega
 • Experience with acoustic condition monitoring - Tordis IOR
 • ALVD Leak detection experience on Ormen lange
Current Gap

- Requirement for redundant systems
 - Full redundancy of the sensor itself
 - 2 separate technologies
- Current solution
 - Phaze and Naxys (Naxys AL(V)D or SALD)
- New suppliers with new/other technologies are needed
Future gap

• Sensor reliability data good enough for non-retrievable systems

• Fields producing at lower pressures
 – Leakage detection of water into pipe lines

• Smaller, cheaper sensors for multiple installations inside subsea compressor station and separation stations units

• Production pipe line leakage detection across 10-100s of km
Conclusion

• Industry still in its "childhood" – need close follow up:
 – supplier – system supplier – end customer – end user

• DNV RP F 302 – Selection and use of subsea leak detection systems
 – Suitable General decision making tool
 – Not suitable for the systems nor sensor suppliers

• How many leakage detection sensors can you buy for the total amount of money an oil spill costs?