Abandonment in Greater Ekofisk. History & Challenges

Karen Bashford-Provence

Director of Well Abandonment & Integrity
Conocophillips
Agenda:

1. History of Abandonment in COPSAS

2. Strategic choices - *time value of money* & well life cycles
 - Well designs
 - Unit(s)
 - Personnel
 - Investment in Technology

3. Improvements in safety
 - Reducing platform risk
 - Well Control
 - Work Environment
 - Norsok compliance

4. The next 40 years.....

5. Questions?
History of Abandonment in Gr Ekofisk:

Original premise for fields and wells were +/- 20 year lifetime. Abandonment was “far” in the future. Field lifetimes have been stretched and production sustained through water flooding projects.

Due to subsidence and age of infrastructure (and low oil prices/high cost to upgrade older rigs) many platform rigs were removed by 1998:

- 2/4 Ekofisk Alpha, Bravo, Charlie, Delta, Tor
- 2/7 Edda, Eldfisk Alpha
- 7/11 A Cod
- 1/6 A Albuskjell Alpha
- 2/4 F Albuskjell Fox

Planning for abandonment started in 1997
Modular Rig (Rig 66) was constructed as a P&A rig in Edmonton/Canada 1997 designed in 20mT modules to be used for P&A at all platforms. Smedvig was main contractor, Dreco was subcontractor.

As back-up rig to Rig 66, the Dolsnub-4 snubbing unit was provided from Dolphin (subcontracted from Smedvig).
History of Abandonment in Gr Ekofisk:

As a result of rig choices, the P&A team had to look for alternative P&A methods and started several studies for rig(less) solutions, plugging compounds, P&A technologies...

To save time, the wells on Cod were P&A'd with the snubbing unit Dolsnub 4 Oct 1998 - Aug 1999.

Rigless P&A technologies were developed, but time constraints prevented the best in class rig solutions to be selected, consequently the old workover rig (used on Edda, Kilo & Brent Delta) was selected, but required upgrade - new name became Rig 2000.

All wells on the following platforms were then plugged as follows:

- Albuskjell 2/4 F
 June 2000 - July 2001
- West 2/4 Delta
 Dec 2000 - Dec 2002
- Edda 2/7 C
 June 2002 - Sept 2003
- Albuskjell 1/6 A
 Mar 2003 - Feb 2005

A number of wells needed to be re-entered.

This changed how abandonments were conducted
Strategic Choices (General):

Mature fields - design the well with contingency and flexibility

Assume that the bottom will need to be P&A'd more than once……..

Design for 2 Miocene plugs

Well & Platform Life cycle

Combine platform safety choices with P&A scope. Utilise the existing resources in the field

Eg - why suspend a reservoir section when you can P&A?

Sell it - “I can spend X now rather than 24X later”

Manage final abandonment as a “project”
- specialist resources
- identify constraints + needed technology
- contracting strategies
- risk assessment

Use the slot recovery phase for trials.
Strategic Choices (Ekofisk Specific):

History and Future of the field - water flood or blowdown?

Changing pressure profiles and formation strengths.

Abandoning correctly
- preventing cross flow, releases to environment and not breaking the Petroleum fund
• Permanent well barriers shall extend across the full cross section of the well, include all annuli and seal both vertically and horizontally.

Primary & Secondary well barriers shall be positioned at a depth with sufficient formation strength at the base of the plug in excess of the potential internal pressure (worst anticipated reservoir pressure into account for the abandonment period).

The presence and pressure integrity of casing cement shall be verified to assess the along hole pressure integrity of this WBE.
What we are currently doing:-

- Abandon reservoirs early
- Move scope for “phase II” away from rigs onto lighter units.
- Find more efficient methods for non cemented wells.
- Manage well control + work environment
- Remove surface sections from rigs & manage handling risks
- Understand FSG’s & pressures through lifetime
- 75% costs here

Abandon reservoirs early
Technologies (Cessation Technology Focus):

Understanding what you have:
- Carbon Rod Technology
- Sonic Visualization
- Advanced Geomechanical models and fault mapping.
- Prediction of failure mechanisms

Minimising HSE risks:
- Swarf – improved shakers (volume control) with less personnel exposure. Smaller chips to prevent pack-off’s which trigger loss/gain events.
- Products that can isolate flowing annuli to allow safe nippling. (and that degrade?).
- Reduction of personnel on older platforms.
- Handling well fluids + reduction of waste

Reducing time and cost (barrier across wellbore):
- Section Milling (Cutter Improvements)
- Conventional Casing Milling (Optimizations)
- Perforate, Wash and Cement Behind Casing
- Upward Milling
- Multi-cut, Circulate and Pull Systems
- Jacking Systems (Downhole)
- Operations through nested 7” x 9-5/8” Casing
- Rotary Expansion
- Barrier Repair Systems
- Rigless Abandonment (Coil / Uphole Jacking)
The next 40 years:-

Will we still rely on cement to isolate wells?

Will a log ever tell us if the cement will hold?

Will we ever be able to be truly “rigless” for P&A?

Are we losing reserves because of old decisions?

Will Authorities change the regulations?

Will we blow-down more fields? Or inject CO2?

What is the technology or strategy that we are missing?
Questions?